11,481 research outputs found

    Acoustic diffraction from a semi-infinite elastic plate under arbitrary fluid loading with application to scattering from Arctic ice leads

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1989The problem of a low-frequency acoustic plane wave incident upon a free surface coupled to a semi-infinite elastic plate surface, is solved using an analytic approach based on the Wiener-Hopf method. By low-frequency it is meant that the elastic properties of the plate are adequately described by the thin plate equation (kH ≲ 1). The diffraction problem relates to issues in long range sound propagation through partially ice-covered Arctic waters, where open leads or polynya on the surface represent features from which acoustic energy can be diffracted or scattered. This work focusses on ice as the material for the elastic plate surface, and, though the solution methods presented here have applicability to general edge diffraction problems, the results and conclusions are directed toward the ice lead diffraction process. The work begins with the derivation of an exact solution to a canonical problem: a plane wave incident upon a free surface (Dirichlet boundary condition) coupled to a perfectly rigid surface (Neumann boundary condition). Important features of the general edge diffraction problem are included here, with the solution serving as a guideline to the more complicated solutions presented later involving material properties of the boundary. The ice material properties are first addressed using the locally reacting approximation for the input impedance of an ice plate, wherein the effects of elasticity are ignored. This is followed by use of the thin plate equation to describe the input impedance, which incorporates elements of elastic wave propagation. An important issue in working with the thin plate equation is the fluid loading pertaining to sea ice and low-frequency acoustics, which cannot be characterized by simplifying heavy or light fluid loading limits. An approximation to the exact kernel of the Wiener-Hopf functional equation is used here, which is valid in this mid-range fluid loading regime. Use of this approximate kernel allows one to proceed to a complete and readily interpretable solution for the far field diffracted pressure, which includes a subsonic flexural wave in the ice plate. By using Green's theorem, in conjunction with the behavior of the diffracted field along the two-part planar boundary, the functional dependence of ∏D (total diffracted power) in terms of k (wavenumber), H (ice thickness), α (grazing angle) and the combined elastic properties of the ice sheet and ambient medium, is determined. A means to convert ∏D into an estimate of dB loss per bounce is developed using ray theoretical methods, in order to demonstrate a mechanism for acoustic propagation loss attributed directly to ice lead diffraction effects. Data from the 1984 MIZEX (Marginal Ice Zone Experiments) narrow-band acoustic transmission experiments are presented and discussed in this context.I also gratefully acknowledge financial support provided by the WHOI Education Office and the Office of Naval Research

    Effects of prolonged acceleration with or without clinostat rotation on seedlings of Arabidopsis thaliana (L.) Heynh

    Get PDF
    Three 21-day tests of the effects of chronic centrifugation were carried out on populations of Arabidopsis thaliana. In addition to 1 g the resultant g-forces tested were: 2,4,6,8,16, and 20 g. Observed end points included gross morphological characters such as size of plant organs and, at the other extreme, features of sub-cellular structure and ultrastructure. Plants were grown on banks of clinostats. The acceleration vector was directed either parallel with the plants' axes or transverse to the axes. Plant responses to chronic axial acceleration and to transverse acceleration with clinostated plants were determined. From the data obtained it was possible in some cases: (1) to determine the g-functions of specific plant developmental characters; (2) to extrapolate those functions to the hypothetical value at zero g in order to predict (tentatively) the morphology of a plant grown in space, (3) to describe morphological effects of clinostat rotation, (4) to determine which of those effects was influenced by the prevailing g-force, and (5) to put to direct test the assumption that clinostat rotation nullifies or compensates for the influence of gravity

    Fracture Energy of High-Strength Concrete in Compression

    Get PDF

    Fictitious Crack Model of Concrete Fracture

    Get PDF

    Circadian rhythm of leaf movement in Capsicum annuum observed during centrifugation

    Get PDF
    Plant circadian rhythms of leaf movement in seedlings of the pepper plant (Capsicum annuum L., var. Yolo Wonder) were observed at different g-levels by means of a centrifuge. Except for the chronically imposed g-force all environmental conditions to which the plants were exposed were held constant. The circadian period, rate of change of amplitude of successive oscillations, symmetry of the cycles, and phase of the rhythm all were found not to be significantly correlated with the magnitude of the sustained g-force

    Effects of increased G-force on the nutations of sunflower seedlings

    Get PDF
    A centrifuge was used to provide chronic acceleration in order to study the nutation of six-day old sunflower hypocotyls at 1 to 20 times normal gravity (g). At the upper end of the g-range nutational movement was impeded and at times erratic evidently because the weight of the cotyledons exceeded the supportive abilities of the hypocotyls. Over the range from 1 to 9 g the period of nutation was independent of the resultant g-force. That finding is interpreted as evidence that the geotropic response time -- i.e., the time needed for growth hormone transport from the region of g-sensing to the region of bending response --was not influenced significantly by substantial increments of the g-level, since geotropic response time is related to the period of nutation

    Effects of vertical rotation on Arabidopsis development

    Get PDF
    Various gross morphological end points of Arabidopsis development are examined in an attempt to separate the effects of growth on the horizontal clinostat into a component caused by rotation alone and another component caused by the altered position with respect to the direction of the g-vector. In a series of tests which involved comparisons between vertical stationary plants, vertical rotated plants, and plants rotated on clinostats, certain characters were consistently influenced by vertical rotation alone. The characters for which this effect was statistically significant were petiole length and leaf blade width

    Classical Concepts in Quantum Programming

    Get PDF
    The rapid progress of computer technology has been accompanied by a corresponding evolution of software development, from hardwired components and binary machine code to high level programming languages, which allowed to master the increasing hardware complexity and fully exploit its potential. This paper investigates, how classical concepts like hardware abstraction, hierarchical programs, data types, memory management, flow of control and structured programming can be used in quantum computing. The experimental language QCL will be introduced as an example, how elements like irreversible functions, local variables and conditional branching, which have no direct quantum counterparts, can be implemented, and how non-classical features like the reversibility of unitary transformation or the non-observability of quantum states can be accounted for within the framework of a procedural programming language.Comment: 11 pages, 4 figures, software available from http://tph.tuwien.ac.at/~oemer/qcl.html, submitted for QS2002 proceeding
    corecore