72,178 research outputs found

    Thick Braneworlds and the Gibbons-Kallosh-Linde No-go Theorem in the Gauss-Bonnet Framework

    Full text link
    The sum rules related to thick braneworlds are constructed, in order to encompass Gauss-Bonnet terms. The generation of thick branes is hence proposed in a periodic extra dimension scenario, what circumvents the Gibbons-Kallosh-Linde no-go theorem in this context.Comment: 6 pages, to appear in the EPL. arXiv admin note: text overlap with arXiv:1406.632

    Unfolding Physics from the Algebraic Classification of Spinor Fields

    Get PDF
    After reviewing the Lounesto spinor field classification, according to the bilinear covariants associated to a spinor field, we call attention and unravel some prominent features involving unexpected properties about spinor fields under such classification. In particular, we pithily focus on the new aspects --- as well as current concrete possibilities. They mainly arise when we deal with some non-standard spinor fields concerning, in particular, their applications in physics.Comment: 6 pages, accepted for publication in PL

    Gravitational constraints of dS branes in AdS Einstein-Brans-Dicke bulk

    Full text link
    We derive the full projected Einstein-Brans-Dicke gravitational equations associated with a n-dimensional brane embedded in a (n+1)-dimensional bulk. By making use of general conditions, as the positivity of the Brans-Dicke parameter and the effective Newton gravitational constant as well, we are able to constrain the brane cosmological constant in terms of the brane tension, the Brans-Dicke scalar field, and the trace of the stress tensor on the brane, in order to achieve a dSdS brane. Applying these constraints to a specific five-dimensional model, a lower bound for the scalar field on the brane is elicited without solving the full equations. It is shown under which conditions the brane effective cosmological constant can be ignored in the brane projected gravitational field equations, suggesting a different fine tuning between the brane tension and the bulk cosmological.Comment: 9 pages, revTe

    Braneworld Remarks in Riemann-Cartan Manifolds

    Full text link
    We analyze the projected effective Einstein equation in a 4-dimensional arbitrary manifold embedded in a 5-dimensional Riemann-Cartan manifold. The Israel-Darmois matching conditions are investigated, in the context where the torsion discontinuity is orthogonal to the brane. Unexpectedly, the presence of torsion terms in the connection does not modify such conditions whatsoever, despite of the modification in the extrinsic curvature and in the connection. Then, by imposing the Z_2-symmetry, the Einstein equation obtained via Gauss-Codazzi formalism is extended, in order to now encompass the torsion terms. We also show that the factors involving contorsion change drastically the effective Einstein equation on the brane, as well as the effective cosmological constant.Comment: 7 pages. A corrected misprint in def.(18), and the respective terms in Eqs.(20-23). All physical consequences remain unchange

    Hawking Radiation from Elko Particles Tunnelling across Black Strings Horizon

    Full text link
    We apply the tunnelling method for the emission and absorption of Elko particles in the event horizon of a black string solution. We show that Elko particles are emitted at the expected Hawking temperature from black strings, but with a quite different signature with respect to the Dirac particles. We employ the Hamilton-Jacobi technique to black hole tunnelling, by applying the WKB approximation to the coupled system of Dirac-like equations governing the Elko particle dynamics. As a typical signature, different Elko particles are shown to produce the same standard Hawking temperature for black strings. However we prove that they present the same probability irrespective of outgoing or ingoing the black hole horizon. It provides a typical signature for mass dimension one fermions, that is different from the mass dimension three halves fermions inherent to Dirac particles, as different Dirac spinor fields have distinct inward and outward probability of tunnelling.Comment: 5 pages, notation for the event horizon changed, 4 lines removed, to appear in Europhys. Let

    Anisotropic simplicial minisuperspace model

    Get PDF
    The computation of the simplicial minisuperspace wavefunction in the case of anisotropic universes with a scalar matter field predicts the existence of a large classical Lorentzian universe like our own at late timesComment: 19 pages, Latex, 6 figure
    corecore