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After reviewing the Lounesto spinor field classification, according to the bilinear covariants associated to
a spinor field, we call attention and unravel some prominent features involving unexpected properties
about spinor fields under such classification. In particular, we pithily focus on the new aspects — as well
as current concrete possibilities. They mainly arise when we deal with some non-standard spinor fields
concerning, in particular, their applications in physics.
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1. Introduction

From the classical point of view, the definition of spinors is
based upon irreducible representations of the group Spin+(p,q),
where p + q = n is the spacetime dimension. Due to the imme-
diate physical interest, mainly the Minkowski spacetime R

1,3 has
being regarded since the 1920s. On the another hand, the repre-
sentation space associated to an irreducible regular representation
in a Clifford algebra is a minimal left ideal. Its elements are the
so-called algebraic spinors. Another possible definition of a spinor,
which is denominated operatorial, can be introduced from another
representation — distinct of the regular representation — of a Clif-
ford algebra, using the representation space associated to the even
subalgebra. This definition is equivalent to the classical and alge-
braic ones, in particular in the cases of great interest for physical
applications. The classical definition of spinor is the customary
approach in several superb textbooks in physics, e.g., [1]. There
is no damage in asserting that, in Minkowski spacetime, classi-
cal spinors are irreducible representations of the Lorentz group
Spin+(1,3) � SL(2,C). Notwithstanding, this paradigm severely
restricts the analysis to the usual Dirac, Weyl, and Majorana
spinors.

A new possibility involving the spinor fields classification was
introduced by Lounesto [2], as a palpable paradigm shift. It is
based upon the bilinear covariants and their underlying multivec-
tor structure. In particular, this classification evinces the existence
of a new type of spinor field, the so-called flag-dipole spinor fields.
Furthermore, it additionally presents another class of spinor fields
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(the flagpoles) that accommodates Elko spinor fields, which are
prime candidates to the dark matter description [3]. They gener-
alize Majorana spinor fields. As it is well known, any spin-half
spinor field, that potentially describes the dark matter, respects
the symmetries of the Poincaré group in the sense of Weinberg,
if it is an element of a standard Wigner class of representations
of the Poincaré group. As it will be reported, Elko spinor fields
do not belong to the standard Wigner class. Among a significant
amount of unexpected and interesting properties, it was recently
demonstrated that the topological exotic spacetime structure can
be probed uniquely by Elko spinor fields: they are, hence, suitable
to investigate the eventual non-trivial topology of the universe [4].
By such exoticness, dynamical constraints converted into a dark
spinor mass generation mechanism, with the encrypted VSR sym-
metries holding as well.

The aim of this work is to report some of the recent advances
in this field of research, calling special attention to the interest-
ing features associated to the new spinor fields appearing in the
Lounesto’s classification. In order to accomplish that, we organize
this work as follows: in the next section we review the formal and
necessary aspects regarding the Lounesto spinor classification. In
Section 3, we explore some of the odd and captivating aspects as-
sociated to Elko and flag-dipole spinor fields. In the final section
we conclude.

2. Classifying spinor fields

We start this section reviewing some indispensable preliminary
concepts. For a deeper approach see, e.g., [5]. Consider the tensor
algebra T (V ) = ⊕∞

i=0 T i(V ), where V is a finite n-dimensional real
vector space. Henceforth V is regarded as being the tangent space
on a point on a manifold. Let Λk(V ) denote the antisymmetric
k-tensors space, indeed the k-forms vector space. In this way
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Λ(V ) = ⊕n
k=0 Λk(V ) is the space of the differential forms over V .

For any ψ ∈ Λ(V ), the reversion is defined by ψ̃ = (−1)[k/2]ψ
(the integer part of m is denoted by [m]), which is an anti-
automorphism in Λ(V ). Moreover, ψ̂ = (−1)kψ denotes the
graded involution, also called main automorphism. It is possi-
ble to use the metric g : V ∗ × V ∗ → R extended to the k-forms
space, in order to define the left and right contractions. Hence, for
ψ = ∧p

i=1 ui ≡ u1 ∧ · · · ∧ up and φ = ∧r
j=1 vr , with ui,v j ∈ V ∗ , the

extension of g to Λ(V ) reads g(ψ,φ) = det(g(ui,v j)) for p = r,
and zero otherwise. Now one defines the left contraction by

g(ψ � ϕ,χ) = g(ϕ, ψ̃ ∧ χ), for ψ,ϕ,χ ∈ Λ(V ). (1)

For v ∈ V , the Leibniz rule for the contraction is

v � (ψ ∧ ϕ) = (v � ψ) ∧ ϕ + ψ̂ ∧ (v � ϕ) (2)

respectively. The Clifford product between v ∈ V and χ ∈ Λ(V ) is
vχ = w ∧ χ + v � χ and the pair (Λ(V ), g), endowed with the
Clifford product, is denoted by Cl(V , g) (Clp,q is a notation that
shall be reserved to the Clifford algebra when V � R

p,q).
In order to properly revisit the bilinear covariants let us fix

the gamma matrices notation. All the formalism in representa-
tion independent, and hence we use hereon the Weyl (or chiral)

representation of γ μ: γ0 = γ 0 =
(
O I

I O

)
, γk = −γ k =

(
O σk

−σk O

)
,

where I =
(

1 0
0 1

)
, O =

(
0 0
0 0

)
and the σi are the Pauli matrices.

Moreover γ 5 = iγ 0γ 1γ 2γ 3. All the spinor fields in this work are
placed in the Minkowski spacetime (M � R

1,3, η, D, τ ,↑), where
η = diag(1,−1,−1,−1) is a metric which has a compatible (Levi-
Civita) connection D associated. Besides, M has spacetime orienta-
tion induced by the volume element τ as well as time orientation
denoted by ↑. We denote by {xμ} global coordinates, in terms of
which an inertial frame — a section of the frame bundle PSO1,3(M)

— reads eμ = ∂/∂xμ .
At this point we recall that classical spinor fields are sections of

the vector bundle PSpin1,3 ×C
2, where the specific representation of

SL(2,C) � Spin1,3 in C
2 is implicit. In this framework, the bilinear

covariants associated to a spinor field ψ ∈ PSpin1,3 ×C
2 are sections

of Λ(T M) into the Clifford bundle of multiform fields, given by

σ = ψ†γ0ψ, J = Jμθμ = ψ†γ0γμψθμ,

S = Sμνθμν = 1

2
ψ†γ0iγμνψθμ ∧ θν,

K = Kμθμ = ψ†γ0iγ0123γμψθμ, ω = −ψ†γ0γ0123ψ, (3)

where {θμ} is the dual basis of {eμ}. The bilinear covariants obey
quadratic equations, the so-called Fierz–Pauli–Kofink identities [2]

J � K = 0, J2 = ω2 + σ 2,

J ∧ K = −(ω + σγ0123)S, K2 = −J2, (4)

which are particularly interesting in what follows. The Fierz aggre-
gate Z is defined by

Z = σ + J + iS − iγ0123K + γ0123ω. (5)

Eqs. (3) may be recast in terms of Z , yielding

Z 2 = 4σ Z , Zγμ Z = 4 Jμ Z , Z iγμν Z = 4Sμν Z ,

Zγ0123 Z = −4ωZ , Z iγ0123γμ Z = 4Kμ Z . (6)

Therefore, it is possible to categorize different spinor fields by
different Z ’s, or similarly by distinct bilinear covariants. The
Lounesto spinor field classification provides the following spinor
field classes [2]:

1) σ 
= 0, ω 
= 0; 4) σ = 0 = ω, K 
= 0, S 
= 0;
2) σ 
= 0, ω = 0; 5) σ = 0 = ω, K = 0, S 
= 0;
3) σ = 0, ω 
= 0; 6) σ = 0 = ω, K 
= 0, S = 0.

The first three classes are composed by Dirac spinor fields and
it is implicit that in this case J,K,S 
= 0. In particular, for a Dirac
spinor fields describing an electron, J is a future-oriented timelike
current vector providing the current of probability; S is the distri-
bution of intrinsic angular momentum, and the spacelike vector K
is associated to the direction of the electron spin.

A Majorana spinor field belongs to the class (5), while Weyl
spinor fields are in the class (6). Type-(4) spinor fields are the so-
called flag-dipole spinor fields. Furthermore, if ψ is a typical Dirac
spinor field and ζ is an arbitrary spinor field such that ζ †γ0 
= 0,
ψ is herewith proportional to Zζ , where Z is given by Eq. (5).

Before delving deeper into the investigation of some interest-
ing outputs in this approach, let us first emphasize that there
are no other possible classes for the spinor fields based on dif-
ferent bilinear covariants. In fact, when σ 
= 0 and/or ω 
= 0, it
implies that S 
= 0 and K 
= 0 — note that J 0 > 0 and hence J does
not equal zero. Besides, the constraint ω = 0 = σ implies that
Z = J(1 + i(s + hγ0123)), where (s + hγ0123)

2 = −1, s is a space-
like vector, and h a real number given by h = ±√

1 + s2. In this
vein J(s + hγ0123) = S + Kγ0123. It is useful to provide further fea-
tures of type-(4) spinor fields. For flag-dipole spinor fields, Eq. (5)
gives Z = J + i J s − ihγ0123 J, where s = ‖s‖. It implies forthwith
that (1 + is − ihγ0123)Z = 0, and taking into account that J2 = 0 for
type-(4) spinor fields, Z is shown to be Clifford multivector satis-
fying Z 2 = 0. Such spinor fields were widely investigated in [15] in
a more topological geometric context, as well as some interesting
applications.

The bilinear covariant S in (3) is given by S = J ∧ s. For type-(4)
spinor fields the real coefficient satisfies h 
= 0. Lounesto shows
that either J2 = 0 or (s − ihγ0123)

2 = −1. The helicity h relates
K and J by K = h J. The definition of helicity h in terms of bi-
linear covariants precedes and implies the definition of helicity
in quantum mechanics, as well the equivalent relation for anti-
particles [6]. Such approach further prov ides a straightforward
form for the Hamiltonian describing the one-layer superconductor
graphene, given by Tr(γ 5Kγ 0) [6].

3. Peculiar features

Roughly speaking, the framework of Lounesto’s classification al-
lows a twofold approach: on the one hand it is possible to study
and classify new spinor fields recently discovered in the literature.
Moreover, their geometric content can be explored and it sheds
new light in the investigation on their physical content. We shall
deal with this aspect in the following two subsections. On the an-
other hand, it permits the exploration of genuinely different spinor
fields, without any physical counterpart. We delve into this issue in
the third subsection.

3.1. Elko spinor fields and its properties

Imagine a mass dimension one spinor field with 1/2 spin,
obeying the Klein–Gordon, but not the Dirac field equations. En-
dowed with such predicates, it is indeed possible to call that spinor
field as strange. In what follows, however, we shall argue that the
strangeness of such spinor, the so-called Elko spinor, is far from
pejorative.
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Elko spinor fields are eigenspinors of the charge conjuga-
tion operator with eigenvalues ±1. The plus [minus] sign stands
for self-conjugate [anti-self-conjugate] spinors λS (p) [λA(p)]. Elko
spinor fields arise from the equation of helicity (σ · p̂)φ±(0) =
±φ±(0) [3]. The four spinor fields are given by

λ
S/A
{∓,±}(p) =

√
E + m

2m

(
1 ∓ p

E + m

)
λ

S/A
{∓,±}(0), (7)

where λ
S/A
{∓,±}(0) =

( ±iΘ[φ±(0)]∗
φ±(0)

)
. The operator Θ denotes the

Wigner’s spin-1/2 time reversal operator. As Θ[φ±(0)]∗ and φ±(0)

present opposite helicities, Elko cannot be an eigenspinor field of
the helicity operator, and indeed carries both helicities. In order to
guarantee an invariant real norm, as well as positive definite norm
for two Elko spinor fields, and negative definite norm for the other
two, the Elko dual is given by [3]

¬
λ

S/A
{∓,±}(p) = ±i

[
λ

S/A
{±,∓}(p)

]†
γ 0. (8)

It is useful to choose iΘ = σ2, as in [3], in such a way that it

is possible to express λ(p) =
(

σ2φ∗
L (p)

φL(p)

)
. The dual is defined in

such way that the product (λ
S/A
{∓,±})†ζλ

S/A
{±,∓} remains invariant un-

der Lorentz transformations. This requirement implies ζ = ±iγ 0

for the Elko case, since it belongs to the right ⊕ left representation
space [7]. Endowed with a new dual, Elko respects different or-
thonormality relations, which engenders non-standard spin sums.
Following this reasoning it is possible to envisage the Elko non-
locality (see [7] for the details). Denoting by Λ(x, t) the quantum
field constructed out of Elko spinor fields as the expansion coeffi-
cients and Π(x, t) its conjugate momentum, although the follow-
ing property

{
Λ(x, t),Λ

(
x′, t

)} = 0 = {
Π(x, t),Π

(
x′, t

)}
(9)

holds, an unexpected anti-commutation relation is elicited [3]:

{
Λ(x, t),Π

(
x′, t

)} = i

∫
d3 p

(2π)2

1

2m
eip·(x−x′)2m

[
1 + G(p)

]
. (10)

Here 1 stands for the identity matrix and G(p) = γ 5γμnμ is a
factor arising from the spin sums. The vector nμ = (0,n) defines
some preferential direction [3], where n = 1

sin θ
dp̂
dφ

. It was recently
demonstrated [9], by explicitly calculation, that the integration
over the second term of Eq, (10) equals zero. This is a crucial
point, since this term decides the locality structure of the quan-
tum field.

The mass dimension one related to such spinor fields severely
suppresses the possible couplings to other fields of the standard
model. In fact, if we keep in mind power counting arguments, Elko
spinor fields may interact — in a perturbative renormalizable way
— with itself and with a scalar (Higgs) field. Obviously, the former
type of interaction means an unsuppressed quartic self interaction.
At this point it is important to remark that this feature (quartic
self interaction) is present in the dark matter characteristics ob-
servations [10]. Therefore Elko spinor fields seems to perform an
adequate fermionic dark matter candidate.

It is worth notice that the appearance of the G(p) function in
the spin sums, however, shall not be underestimated. Its presence
turns out to be impossible to conciliate Elko quantum field to the
full Lorentz group. Nevertheless, Elko fields are, in fact, a spinor
representation under the SIM(2) avatar [11] of Very Special Rela-
tivity (VSR) [12]. The group SIM(2) is the largest possible subgroup
of VSR which is necessary to define a quantum theory when parity
symmetry is violated. Hence, understanding Elko as a dark matter
prime candidate, it may signalize that in the dark matter sector the
Lorentz group may not be the underlying relevant group. Indeed,
using the Lounesto framework previously outlined, Elko are classi-
fied as type-(5) spinor fields, a generalization of Majorana spinor
fields carrying both helicities [13]. As mentioned in the Introduc-
tion, Lounesto classification goes beyond the standard classification
by irreducible representations of the Lorentz group Spin+(1,3).
From this perspective, it is quite conceivable that the quantum
fields, constructed out from expansion coefficients which do not
belong to Lorentz representation, do not respect Lorentz symme-
tries themselves.

3.2. The usefulness of topologically exotic terms

Among an extended inventory of relevant new physical possi-
bilities arising from the use of the non-standard spinor fields, we
can branch the role of Elko spinor fields as a detector of exotic
spacetime structures [4]. If the base manifold M upon which the
theory is built is simply connected, then the first homotopy group
π1(M) is well known to be trivial. In this case, supposing that M
satisfies the assumptions in the Geroch theorem [14], there exists
merely one possible spin structure. Consequently, the spin-Dirac
operator in the formalism is the standard one. Notwithstanding,
when non-trivial topologies on M are regarded, there is a non-
trivial line bundle on M . The set of line bundles and the set of
inequivalent spin structures are labeled by elements of the co-
homology group H1(M,Z2) — the group of the homomorphisms
of π1(M) into Z2. In this regard, there are several globally dif-
ferent spin structures arising from the different (and inequivalent)
patches of the local coverings. The spin-Dirac operator has in this
case an additional term, essentially a one-form field, that reflects
the non-trivial topology. Spinor fields associated to these inequiv-
alent spin structures are called exotic spinor fields.

Let us make those considerations more precise. Throughout
this section we denote by Spin1,3 and SO1,3 the components of
such groups connected to the identity, for the sake of concise-
ness. Given the fundamental map, in fact a two-fold covering re-
lating the orthonormal coframe bundle and the spinor bundle1

s : PSpin1,3(M) → PSO1,3 (M), a spin structure on M is a princi-
pal fiber bundle πs : PSpin1,3(M) → M satisfying: (i) π(s(p)) =
πs(p) for every point p of PSpin1,3 (M), where π is the pro-
jection of PSO+(1,3)(M) on M , and (ii) s(pφ) = s(p)Adφ . Here
given φ ∈ Spin1,3(M), we have Adφ(κ) = φκφ−1, for all κ ∈ Cl1,3.
A spin structure P := (PSpin1,3(M), s) exists solely when the second
Stiefel–Whitney class satisfies specific criteria. To our presentation,
however, it is remarkable that if H1(M,Z2) is not trivial, then the
spin structure is not uniquely defined. Two spin structures, say P
and P̃ , are said to be equivalent if there exists a map χ : P → P̃
compatible with s and s̃; they are said to be inequivalent oth-
erwise. Given an arbitrary spinor field ψ ∈ sec PSpin1,3 (M) × C

4,
where “sec” means “section of”, to each element of the non-trivial
H1(M,Z2) one can associate a Dirac operator ∇ . This construc-
tion provides an one-to-one correspondence between elements of
H1(M,Z2) and inequivalent spin structures (for more details see
[8,4,14]).

A crucial difference between the exotic and the standard spinor
field is the action of the Dirac operator on exotic spinor fields. In a
non-trivial topology scenario, the Dirac operator changes by an ad-
ditional one-form field, which is a manifestation of the non-trivial

1 Let PSO1,3 (M) denote the orthonormal coframe bundle, that always exist on
spin manifolds. Sections of PSO1,3 (M) are orthonormal coframes, and sections of
PSpin1,3 (M) are also orthonormal coframes such that although two coframes dif-
fering by a 2π rotation are distinct, two coframes differing by a 4π rotation are
identified.
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topology. The exotic structure endows the Dirac operator with an
additional term given by a−1(x)da(x), where x ∈ M and d denotes
the exterior derivative operator. The term 1

2iπ a−1(x)da(x) is real,
closed, and defines an integer Cěch cohomology class [16]. Using
the relation between the Cěch and the de Rham cohomologies, it
follows that∮

1

2iπ
a−1(x)da(x) ∈ Z. (11)

When Dirac spinor fields are regarded, the exotic term can be ab-
sorbed into a new shifted potential A �→ A + 1

2iπ a−1(x)da(x): the
exotic term may be understood as an external electromagnetic po-
tential that is summed to the physical electromagnetic potential,
which plays the role of a disguise for the exotic term. In this way
the exotic spacetime structures cannot be probed by Dirac spinor
fields, which perceive the exotic term as an effective electromag-
netic potential.

From the perspective of Elko spinor fields, however, the situ-
ation changes drastically. The reason is that the spinor field dis-
cussed in the previous section is an eigenspinor of the charge
conjugation operator. Therefore it does not carry local U (1) charge
of the standard type. Hence, any type of extra term present in the
Dirac operator cannot be absorbed into the electromagnetic poten-
tial. As it is extensively discussed in [14], the exotic term may be
expressed as a(x)√

2π
= exp (iθ(x)) ∈ U (1). It yields

1

2π
a−1(x)da(x) = exp

(−iθ(x)
)(

iγ μ∇μθ(x)
)

exp
(
iθ(x)

)
= iγ μ∂μθ(x). (12)

Now, making the conceivable exigency that the exotic Dirac op-
erator must be considered the square root of the Klein–Gordon
operator, we have2

[
iγ μ(∇μ + ∂μθ) ± m

][
iγ ν(∇ν + ∂νθ) ∓ m

]
λ

= (
gμν∇μ∇ν + m2)λ = 0. (13)

Therefore, the corresponding Klein–Gordon equation for the exotic
Elko spinor field reads
(� + m2 + gμν∇μ∇νθ + ∂μθ∇μ + ∂μθ∂μθ

)
λ = 0. (14)

Finally, in order to have the Klein–Gordon propagator for the exotic
Elko, as in the standard one, it follows from Eq. (14) that
(�θ(x) + ∂μθ(x)∇μ + ∂μθ(x)∂μθ(x)

)
λ = 0. (15)

The result encoded in Eq. (15) makes Elko spinor field a very use-
ful tool to explore unusual topologies in many contexts. Indeed
Eq. (15) asserts that the Elko spinor structure constrains the exotic
term related to the non-trivial spacetime topology. The possibil-
ity of extracting information from the subjacent topology without
using any additional (sometimes ill defined) shifted potentials is,
in fact, quite attractive. Eq. (15) further encompasses the relation-
ship between gravitational sources induced by exotic topologies.
Recently the combined action of a spinor field coupled to the grav-
itational field was obtained in [17]. Furthermore, Eq. (15) complies
with the differential-topological restrictions on the spacetime for
the evolution of our Universe. The differential-geometric descrip-
tion of matter by differential structures of spacetime might leads
to a unifying model of matter, dark matter and dark energy. In-
deed, by taking into account exotic differential structures, it may
be the source of the observed anomalies without modifying the

2 Hereon we are not going to specify the different Elko types, which simplify the
content of indexes in Eq. (13). Again, for a complete discussion, see [4].
Einstein equations or introducing unusual types of matter, as a vast
resource of possible explanations for recently observed surprising
astrophysical data at the cosmological scale, merely provided by
differential topology [17].

Furthermore, such exoticness induces a dynamical mass which
is embedded in the VSR framework [18]. It is accomplished by
identifying the VSR preferential direction with a dynamical depen-
dence on the kink solution of a λφ4 theory, for a scalar field φ. The
exotic term ∂μθ is chosen to be vμφ, where vμ provides a prefer-
ential direction, an inherent preferred axis — along which Elko is
local. This is solely one among various possible scenarios, using ex-
otic couplings among dark spinor fields and scalar field topological
solutions [18].

3.3. The appearance of new spinors

In the specific context of f (R)-cosmology, it was recently re-
ported a solution for the Dirac equation with torsion, considering
Bianchi type-I cosmological models [19]. The gravitational dynam-
ics of the theory may be described by the metric and its compat-
ible connection, or alternatively by the tetrad field and the spin-
connection as well. The equations of motion are

f ′(R)Rρσ − 1

2
f (R)gρσ = Σρσ ,

1

2

(
∂ f ′(R)

∂xα
+ Sαγ

γ

)(
δα
σ δ

β
ρ − δα

ρ δ
β
σ

) + Sρσ
β = f ′(R)Tρσ

β,

where Rρσ is the Ricci tensor and Tρσ
β stands for the torsion ten-

sor. The quantities σρσ and Sρσ
α are the stress–energy and spin

tensors of the matter fields. The energy–momentum tensor is given
by Σρσ . The idea is to couple f (R)-gravity to spinor fields and to
a spinless perfect fluid. These spinor fields are shown not to be
Dirac spinor fields [20]. In addition the second equation of mo-
tion assents the existence of torsion even in the absence of spinor
fields. Implementing all the necessary constraints, it is possible to
show that the spinor solutions reads

ψ1 = 1√
2τ

⎛
⎜⎝

√
A − B cos ζ1eiθ1

0
0√

A + B sin ζ2eiθ2

⎞
⎟⎠ , (16)

ψ2 = 1√
2τ

⎛
⎜⎜⎝

0√
A + B cos ζ1eiϑ1

√
A − B sin ζ2eiϑ2

0

⎞
⎟⎟⎠ , (17)

where A and B are constants, the angular functions have time
dependence, and τ is defined as the product of the scale fac-
tors appearing in the Bianchi type-I model (not relevant to our
purposes). The point to be stressed is that, after a tedious cal-
culation, the bilinear covariants associated to ψ1 and ψ2 classify
the spinor fields (16) as type-(4): legitimate flag-dipole spinor
fields that are obtained when the Dirac equation with torsion is
regarded in the f (R)-cosmological scenario [21]. It is the first
time, up to our knowledge, that a physical solution corresponds
to a type-(4) spinor.3 Eq. (16) evinces a physical manifestation of

3 This fact is more remarkable than it may sound. Several spinor solutions are of
the form presented in (16). Notwithstanding, after all, the class under Lounesto’s
classification appears to be other than type-(4). For instance, on p. 65 of [22] it is
possible to find similar structured spinor fields. Twenty pages of calculations led the
authors to the very exciting conclusion that they belong to the type-(4) set. After
some ponderation, however, we were brought back to the Earth: professor Leite
Lopes’ book was not written using the Weyl representation!
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type-(4), or flag-dipole, spinor fields according to Lounesto’s clas-
sification.

We finalize this section by pointing out a provocative interpre-
tation of the type-(4) spinor fields as manifested via Eq. (16). There
is no quantum field constructed out yet with type-(4) spinor fields
and it is certainly an interesting branch of research. In view of
the analysis of Section 3.1, such a quantum field shall not respect
Lorentz symmetry. From this perspective, it would be the darkest
possible candidate to dark matter. Being more conservative, with-
out making any reference to its possible quantum field, type-(4)
spinor fields, as it appears, are also quite provocative. Usually, gen-
eralizations of General Relativity are studied to give account of
cosmological problems, without appealing to the existence of dark
matter, for instance. Nevertheless, as we have mentioned, type-(4)
spinor fields appeared only in a (double) generalization of General
Relativity. Moreover, the presence of torsion in an f (R) gravity
is crucial to the functional form of these spinor fields as explicit
in (16). Hence, type-(4) spinor fields, an essentially dark spinor
(we restrain to say dark matter), comes up in a far from usual
gravitational theory, which is commonly investigated to preclude
the necessity of “dark” objects.

4. Final remarks

A plethora of open questions still haunts (in particular) the-
oretical physicists. The non-standard spinor fields — both under
Lounesto as well as Wigner classification — are an evidently use-
ful alternative to pave the road to solve some questions, mainly
in field theory and cosmology/gravitation. It brings some nice
and unexpected properties, like the existence of fermions with
mass dimension one and a subtle Lorentz symmetry breaking,
for instance. Facing such paradigm shift seems to upheaval what
we know already about field theory and the elementary parti-
cles description, which were restricted to Dirac, Majorana and
Weyl spinor fields heretofore, in Minkowski spacetime. As we have
shown, flag-dipole type-(4) spinor fields are physical solutions of
the Dirac equation with torsion in the context of f (R)-cosmology.
Furthermore, Elko spinor fields representing type-(5), abreast of
Majorana spinor fields, are evinced to be prime candidates to de-
scribe dark matter. We moreover have introduced the exotic dark
spinor fields, which dynamics constraints both the spacetime met-
ric structure and the non-trivial topology of the universe. In par-
ticular, it brings exotic couplings among dark spinor fields and
scalar field topological solutions. The topics here introduced are
merely the tip of the iceberg, and there are more useful proper-
ties on spinor fields (and their application in physics) still to be
explored.
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