545 research outputs found

    Thermoelectric and electrical transport in mesoscopic two-dimensional electron gases

    Get PDF
    We review some of our recent experimental studies on low-carrier concentration, mesoscopic two-dimensional electron gases (m2DEGs). The m2DEGs show a range of striking characteristics including a complete avoidance of the strongly localised regime even when the electrical resistivity ρ>>h/e2\rho >> h/e^2, giant thermoelectric response, and an apparent decoupling of charge and thermoelectric transport. We analyse the results and demonstrate that these observations can be explained based on the assumption that the charge carriers retain phase coherence over the m2DEG dimensions. Intriguingly, this would imply phase coherence on lengthscales of up to 10 μ\mum and temperature TT up to 10 K which is significantly greater than conventionally expected in GaAs-based 2DEGs. Such unprecedentedly large phase coherence lengths open up several possibilities in quantum information and computation schemes.Engineering and Physical Sciences Research Council, Leverhulme TrustThis is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.crhy.2016.08.01

    Anticrossing of spin-split subbands in quasi-one-dimensional wires

    Get PDF
    In quantum Hall systems, both anticrossings and magnetic phase transitions can occur when opposite-spin Landau levels coincide. Our results indicate that both processes are also possible in quasi-1D quantum wires in an in-plane B field, B-parallel to. Crossings of opposite-spin 1D subbands resemble magnetic phase transitions at zero dc source-drain bias, but display anticrossings at high dc bias. Our data also imply that the well-known 0.7 structure may evolve into a spin-hybridized state in finite dc bias

    Acoustic transport of electrons in parallel quantum wires

    Get PDF
    Over the last few years we have developed a new method to control single-electrons by isolating and moving them through a submicron width channel formed in a GaAs/AlGaAs heterostructure using a surface acoustic wave. The acoustic wave acts to push electrons through the depleted submicron channel in packets each containing an integer number of electrons. Our primary motivation for studying this system has been to develop a new standard of dc current for metrological purposes, but our recent focus has widened to investigate the possibility of single-photon emission. Here we show new experimental results which demonstrate acoustoelectric current flow in adjacent 1D wires. These results have relevance both to the use of the system in a single-photon emission scheme, as well as in the creation of a proposed acoustoelectric quantum computer

    The role of planar cell polarity in folic acid-induced nephropathy

    Get PDF

    Possible evidence of a spontaneous spin polarization in mesoscopic two-dimensional electron systems

    Get PDF
    We have experimentally studied the nonequilibrium transport in low-density clean two-dimensional (2D) electron systems at mesoscopic length scales. At zero magnetic field (B), a double-peak structure in the nonlinear conductance was observed close to the Fermi energy in the localized regime. From the behavior of these peaks at nonzero B, we could associate them with the opposite spin states of the system, indicating a spontaneous spin polarization at B=0. Detailed temperature and disorder dependence of the structure shows that such a splitting is a ground-state property of low-density 2D systems

    Evolution of the second lowest extended state as a function of the effective magnetic field in the fractional quantum hall regime

    Get PDF
    It has been shown that, at a Landau level filling factor v=1/2, a two-dimensional electron system can be mathematically transformed into a composite fermion system interacting with a Chern-Simons gauge field. At v=1/2, the average of this Chern-Simons gauge field cancels the external magnetic field B-ext so that the effective magnetic field B-eff acting on the composite fermions is zero. Away from v=1/2, the composite fermions experience a net effective magnetic field B-eff. We present the first study of the evolution of the second lowest extended state in a vanishing effective magnetic field in the fractional quantum Hall regime. Our result shows that the evolution of the second lowest extended state has a good linear dependence on the effective magnetic field Beff within the composite fermion picture

    Low-temperature collapse of electron localization in two dimensions

    Get PDF
    We report direct experimental evidence that the insulating phase of a disordered, yet strongly interacting two-dimensional electron system becomes unstable at low temperatures. As the temperature decreases, a transition from insulating to metal-like transport behavior is observed, which persists even when the resistivity of the system greatly exceeds the quantum of resistivity h/e(2). The results have been achieved by measuring transport on a mesoscopic length scale while systematically varying the strength of disorder

    Kondo effect from a tunable bound state within a quantum wire

    Get PDF
    We investigate the conductance of quantum wires with a variable open quantum dot geometry, displaying an exceptionally strong Kondo effect and most of the 0.7 structure characteristics. Our results indicate that the 0.7 structure is not a manifestation of the singlet Kondo effect. However, specific similarities between our devices and many of the clean quantum wires reported in the literature suggest a weakly bound state is often present in real quantum wires

    Interaction effects at crossings of spin-polarized one-dimensional subbands

    Get PDF
    We report conductance measurements of ballistic one-dimensional (1D) wires defined in GaAs/AlGaAs heterostructures in an in-plane magnetic field, B. When the Zeeman energy is equal to the 1D subband energy spacing, the spin-split subband Nup arrow intersects (N+1)down arrow, where N is the index of the spin-degenerate 1D subband. At the crossing of N=1up arrow and N=2down arrow subbands, there is a spontaneous splitting giving rise to an additional conductance structure evolving from the 1.5(2e(2)/h) plateau. With further increase in B, the structure develops into a plateau and lowers to 2e(2)/h. With increasing temperature and magnetic field the structure shows characteristics of the 0.7 structure. Our results suggest that at low densities a spontaneous spin splitting occurs whenever two 1D subbands of opposite spins cross
    corecore