38 research outputs found
Biology-driven cancer drug development: back to the future
Most of the significant recent advances in cancer treatment have been based on the great strides that have been made in our understanding of the underlying biology of the disease. Nevertheless, the exploitation of biological insight in the oncology clinic has been haphazard and we believe that this needs to be enhanced and optimized if patients are to receive maximum benefit. Here, we discuss how research has driven cancer drug development in the past and describe how recent advances in biology, technology, our conceptual understanding of cell networks and removal of some roadblocks may facilitate therapeutic advances in the (hopefully) near future
The association between mental health symptoms and mobility limitation among Russian, Somali and Kurdish migrants: a population based study
Biodiversity impacts of the 2019-2020 Australian megafires.
With large wildfires becoming more frequent1,2, we must rapidly learn how megafires impact biodiversity to prioritize mitigation and improve policy. A key challenge is to discover how interactions among fire-regime components, drought and land tenure shape wildfire impacts. The globally unprecedented3,4 2019-2020 Australian megafires burnt more than 10 million hectares5, prompting major investment in biodiversity monitoring. Collated data include responses of more than 2,000 taxa, providing an unparalleled opportunity to quantify how megafires affect biodiversity. We reveal that the largest effects on plants and animals were in areas with frequent or recent past fires and within extensively burnt areas. Areas burnt at high severity, outside protected areas or under extreme drought also had larger effects. The effects included declines and increases after fire, with the largest responses in rainforests and by mammals. Our results implicate species interactions, dispersal and extent of in situ survival as mechanisms underlying fire responses. Building wildfire resilience into these ecosystems depends on reducing fire recurrence, including with rapid wildfire suppression in areas frequently burnt. Defending wet ecosystems, expanding protected areas and considering localized drought could also contribute. While these countermeasures can help mitigate the impacts of more frequent megafires, reversing anthropogenic climate change remains the urgent broad-scale solution
Noncrystalline uric acid inhibits proteoglycan and glycosaminoglycan synthesis in distal tubular epithelial cells (MDCK)
Economic inequalities amongst women with osteoporosis-related fractures: an application of concentration index decomposition
Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells
Treatment of chronic myeloid leukemia (CML) with imatinib mesylate and other second- and/or third-generation c-Abl-specific tyrosine kinase inhibitors (TKIs) has substantially extended patient survival. However, TKIs primarily target differentiated cells and do not eliminate leukemic stem cells (LSCs). Therefore, targeting minimal residual disease to prevent acquired resistance and/or disease relapse requires identification of new LSC-selective target(s) that can be exploited therapeutically. Considering that malignant transformation involves cellular metabolic changes, which may in turn render the transformed cells susceptible to specific assaults in a selective manner, we searched for such vulnerabilities in CML LSCs. We performed metabolic analyses on both stem cell-enriched (CD34(+) and CD34(+)CD38(-)) and differentiated (CD34(-)) cells derived from individuals with CML, and we compared the signature of these cells with that of their normal counterparts. Through combination of stable isotope-assisted metabolomics with functional assays, we demonstrate that primitive CML cells rely on upregulated oxidative metabolism for their survival. We also show that combination treatment with imatinib and tigecycline, an antibiotic that inhibits mitochondrial protein translation, selectively eradicates CML LSCs both in vitro and in a xenotransplantation model of human CML. Our findings provide a strong rationale for investigation of the use of TKIs in combination with tigecycline to treat patients with CML with minimal residual disease
