74 research outputs found
Displacements analysis of self-excited vibrations in turning
The actual research deals with determining by a new protocol the necessary
parameters considering a three-dimensional model to simulate in a realistic way
the turning process on machine tool. This paper is dedicated to the
experimental displacements analysis of the block tool / block workpiece with
self-excited vibrations. In connexion with turning process, the self-excited
vibrations domain is obtained starting from spectra of two accelerometers. The
existence of a displacements plane attached to the tool edge point is revealed.
This plane proves to be inclined compared to the machines tool axes. We
establish that the tool tip point describes an ellipse. This ellipse is very
small and can be considered as a small straight line segment for the stable
cutting process (without vibrations). In unstable mode (with vibrations) the
ellipse of displacements is really more visible. A difference in phase occurs
between the tool tip displacements on the radial direction and on the cutting
one. The feed motion direction and the cutting one are almost in phase. The
values of the long and small ellipse axes (and their ratio) shows that these
sizes are increasing with the feed rate value. The axis that goes through the
stiffness center and the tool tip represents the maximum stiffness direction.
The maximum (resp. minimum) stiffness axis of the tool is perpendicular to the
large (resp. small) ellipse displacements axis. FFT analysis of the
accelerometers signals allows to reach several important parameters and
establish coherent correlations between tool tip displacements and the static -
elastic characteristics of the machine tool components tested
Grinding and fine finishing of future automotive powertrain components
The automotive industry is undergoing a major transformation driven by regulations and a fast-paced electrification. A critical analysis of technological trends and associated requirements for major automotive powertrain components is carried out in close collaboration with industry – covering the perspectives of OEMs, suppliers, and machine builders. The main focus is to review the state of the art with regard to grinding, dressing, texturing and fine-finishing technologies. A survey of research papers and patents is accompanied by case studies that provide further insights into the production value chain. Finally, key industrial and research challenges are summarized
New method to characterize a machining system: application in turning
Many studies simulates the machining process by using a single degree of
freedom spring-mass sytem to model the tool stiffness, or the workpiece
stiffness, or the unit tool-workpiece stiffness in modelings 2D. Others impose
the tool action, or use more or less complex modelings of the efforts applied
by the tool taking account the tool geometry. Thus, all these models remain
two-dimensional or sometimes partially three-dimensional. This paper aims at
developing an experimental method allowing to determine accurately the real
three-dimensional behaviour of a machining system (machine tool, cutting tool,
tool-holder and associated system of force metrology six-component
dynamometer). In the work-space model of machining, a new experimental
procedure is implemented to determine the machining system elastic behaviour.
An experimental study of machining system is presented. We propose a machining
system static characterization. A decomposition in two distinct blocks of the
system "Workpiece-Tool-Machine" is realized. The block Tool and the block
Workpiece are studied and characterized separately by matrix stiffness and
displacement (three translations and three rotations). The Castigliano's theory
allows us to calculate the total stiffness matrix and the total displacement
matrix. A stiffness center point and a plan of tool tip static displacement are
presented in agreement with the turning machining dynamic model and especially
during the self induced vibration. These results are necessary to have a good
three-dimensional machining system dynamic characterization
Assessment of the effectiveness of a spindle power signal for tool condition monitoring in machining processes
Development of an online machining process monitoring system: a case study of the broaching process
Micro-stiffener surface characteristics with belt polishing processing for titanium alloys
A Continuum Robot for Remote Applications: From Industrial to Medical Surgery With Slender Continuum Robots
The maintenance of critical industrial components is often hindered by limited access, tortuous passages, and complex geometries. In highly constrained environments, inspection tasks are currently performed with borescopes, but even skilled operators struggle with hard-to-reach targets, and the limited mobility prevents in situ repair when defects are identified. Thanks to an active shape control, snakelike and continuum robots can outperform borescopes for short-range inspection as well as enable intervention. However, their actuation technology limits their scalability in length, as longer bodies pose control challenges due to their intrinsically low stiffness and space constraints. To overcome the limitations of both borescopes and continuum robots, here, we propose a modular design at their intersection, with both active tendon-driven and passively flexible segments. The main elements of the novel design, including the actuation and control interface, are described, and the system is demonstrated in scenarios for aerospace assets, nuclear installations, and robotassisted surgery
- …
