21 research outputs found

    Tailoring the atomic structure of graphene nanoribbons by STM lithography

    Full text link
    The practical realization of nano-scale electronics faces two major challenges: the precise engineering of the building blocks and their assembly into functional circuits. In spite of the exceptional electronic properties of carbon nanotubes only basic demonstration-devices have been realized by time-consuming processes. This is mainly due to the lack of selective growth and reliable assembly processes for nanotubes. However, graphene offers an attractive alternative. Here we report the patterning of graphene nanoribbons (GNRs) and bent junctions with nanometer precision, well-defined widths and predetermined crystallographic orientations allowing us to fully engineer their electronic structure using scanning tunneling microscope (STM) lithography. The atomic structure and electronic properties of the ribbons have been investigated by STM and tunneling spectroscopy measurements. Opening of confinement gaps up to 0.5 eV, allowing room temperature operation of GNR-based devices, is reported. This method avoids the difficulties of assembling nano-scale components and allows the realization of complete integrated circuits, operating as room temperature ballistic electronic devices.Comment: 8 pages text, 5 figures, Nature Nanotechnology, in pres

    Mid-infrared plasmons in scaled graphene nanostructures

    Full text link
    Plasmonics takes advantage of the collective response of electrons to electromagnetic waves, enabling dramatic scaling of optical devices beyond the diffraction limit. Here, we demonstrate the mid-infrared (4 to 15 microns) plasmons in deeply scaled graphene nanostructures down to 50 nm, more than 100 times smaller than the on-resonance light wavelength in free space. We reveal, for the first time, the crucial damping channels of graphene plasmons via its intrinsic optical phonons and scattering from the edges. A plasmon lifetime of 20 femto-seconds and smaller is observed, when damping through the emission of an optical phonon is allowed. Furthermore, the surface polar phonons in SiO2 substrate underneath the graphene nanostructures lead to a significantly modified plasmon dispersion and damping, in contrast to a non-polar diamond-like-carbon (DLC) substrate. Much reduced damping is realized when the plasmon resonance frequencies are close to the polar phonon frequencies. Our study paves the way for applications of graphene in plasmonic waveguides, modulators and detectors in an unprecedentedly broad wavelength range from sub-terahertz to mid-infrared.Comment: submitte

    Defect symmetry influence on electronic transport of zigzag nanoribbons

    Get PDF
    The electronic transport of zigzag-edged graphene nanoribbon (ZGNR) with local Stone-Wales (SW) defects is systematically investigated by first principles calculations. While both symmetric and asymmetric SW defects give rise to complete electron backscattering region, the well-defined parity of the wave functions in symmetric SW defects configuration is preserved. Its signs are changed for the highest-occupied electronic states, leading to the absence of the first conducting plateau. The wave function of asymmetric SW configuration is very similar to that of the pristine GNR, except for the defective regions. Unexpectedly, calculations predict that the asymmetric SW defects are more favorable to electronic transport than the symmetric defects configuration. These distinct transport behaviors are caused by the different couplings between the conducting subbands influenced by wave function alterations around the charge neutrality point

    First-principles quantum transport modeling of spin-transfer and spin-orbit torques in magnetic multilayers

    Full text link
    We review a unified approach for computing: (i) spin-transfer torque in magnetic trilayers like spin-valves and magnetic tunnel junction, where injected charge current flows perpendicularly to interfaces; and (ii) spin-orbit torque in magnetic bilayers of the type ferromagnet/spin-orbit-coupled-material, where injected charge current flows parallel to the interface. Our approach requires to construct the torque operator for a given Hamiltonian of the device and the steady-state nonequilibrium density matrix, where the latter is expressed in terms of the nonequilibrium Green's functions and split into three contributions. Tracing these contributions with the torque operator automatically yields field-like and damping-like components of spin-transfer torque or spin-orbit torque vector, which is particularly advantageous for spin-orbit torque where the direction of these components depends on the unknown-in-advance orientation of the current-driven nonequilibrium spin density in the presence of spin-orbit coupling. We provide illustrative examples by computing spin-transfer torque in a one-dimensional toy model of a magnetic tunnel junction and realistic Co/Cu/Co spin-valve, both of which are described by first-principles Hamiltonians obtained from noncollinear density functional theory calculations; as well as spin-orbit torque in a ferromagnetic layer described by a tight-binding Hamiltonian which includes spin-orbit proximity effect within ferromagnetic monolayers assumed to be generated by the adjacent monolayer transition metal dichalcogenide.Comment: 22 pages, 9 figures, PDFLaTeX; prepared for Springer Handbook of Materials Modeling, Volume 2 Applications: Current and Emerging Material
    corecore