18 research outputs found
The opposing effects of isotropic and anisotropic attraction on association kinetics of proteins and colloids
The association and dissociation of particles via specific anisotropic interactions is a fundamental
process, both in biology (proteins) and in soft matter (colloidal patchy particles). The presence of
alternative binding sites can lead to multiple productive states and also to non-productive “decoy” or
intermediate states. Besides anisotropic interactions, particles can experience non-specific isotropic
interactions. We employ single replica transition interface sampling to investigate how adding a
non-productive binding site or a nonspecific isotropic interaction alters the dimerization kinetics of
a generic patchy particle model. The addition of a decoy binding site reduces the association rate
constant, independent of the site’s position, while adding an isotropic interaction increases it due
to an increased rebinding probability. Surprisingly, the association kinetics becomes non-monotonic
for a tetramer complex formed by multivalent patchy particles. While seemingly identical to twoparticle
binding with a decoy state, the cooperativity of binding multiple particles leads to a kinetic
optimum. Our results are relevant for the understanding and modeling of biochemical networks and
self-assembly processes. Published by AIP Publishing. https://doi.org/10.1063/1.500648
Path Sampling Simulations Reveal How the Q61L Mutation Alters the Dynamics of KRas
[Image: see text] Flexibility is essential for many proteins to function, but can be difficult to characterize. Experiments lack resolution in space and time, while the time scales involved are prohibitively long for straightforward molecular dynamics simulations. In this work, we present a multiple state transition path sampling simulation study of a protein that has been notoriously difficult to characterize in its active state. The GTPase enzyme KRas is a signal transduction protein in pathways for cell differentiation, growth, and division. When active, KRas tightly binds guanosine triphosphate (GTP) in a rigid state. The protein–GTP complex can also visit more flexible states, in which it is not active. KRas mutations can affect the conversion between these rigid and flexible states, thus prolonging the activation of signal transduction pathways, which may result in tumor formation. In this work, we apply path sampling simulations to investigate the dynamic behavior of KRas-4B (wild type, WT) and the oncogenic mutant Q61L (Q61L). Our results show that KRas visits several conformational states, which are the same for WT and Q61L. The multiple state transition path sampling (MSTPS) method samples transitions between the different states in a single calculation. Tracking which transitions occur shows large differences between WT and Q61L. The MSTPS results further reveal that for Q61L, a route to a more flexible state is inaccessible, thus shifting the equilibrium to more rigid states. The methodology presented here enables a detailed characterization of protein flexibility on time scales not accessible with brute-force molecular dynamics simulations
A replica exchange transition interface sampling method with multiple interface sets for investigating networks of rare events
The multiple state transition interface sampling (TIS) framework in principle allows the simulation of a large network of complex rare event transitions, but in practice suffers from convergence problems. To improve convergence, we combine multiple state TIS [J. Rogal and P. G. Bolhuis, J. Chem. Phys. 129, 224107 (2008)] with replica exchange TIS [T. S. van Erp, Phys. Rev. Lett. 98, 268301 (2007)]. In addition, we introduce multiple interface sets, which allow more than one order parameter to be defined for each state. We illustrate the methodology on a model system of multiple independent dimers, each with two states. For reaction networks with up to 64 microstates, we determine the kinetics in the microcanonical ensemble, and discuss the convergence properties of the sampling scheme. For this model, we find that the kinetics depend on the instantaneous composition of the system. We explain this dependence in terms of the system's potential and kinetic energy
Predicting the Mechanism and Kinetics of the Watson-Crick to Hoogsteen Base Pairing Transition
DNA duplexes predominantly contain Watson-Crick (WC) base pairs. Yet, a non-negligible number of base pairs converts to the Hoogsteen (HG) hydrogen bonding pattern, involving a 180° rotation of the purine base relative to Watson-Crick. These WC to HG conversions alter the conformation of DNA, and may play a role in several processes including recognition and replication. The transient nature of these processes hamper thorough experimental investigation. Molecular dynamics simulations can provide complementary insights to experiments at high spatial and temporal resolution. By using path sampling techniques, a framework that harvests molecular dynamics trajectories that undergo reactions of interest, we avoid long waiting times in stable states, thus focusing on the actual transition. Our results reveal that WC to HG conversion can proceed along different routes with a varying degree of exposure of the purine. Furthermore, we computed the rate constants for this transition using transition interface sampling