41 research outputs found

    Lower Extremity Musculoskeletal Injury in US Military Academy Cadet Basic Training: A Survival Analysis Evaluating Sex, History of Injury, and Body Mass Index

    Get PDF
    Background: Injury incidence for physically active populations with a high volume of physical load can exceed 79%. There is little existing research focused on timing of injury and how that timing differs based on certain risk factors. Purpose/Hypothesis: The purpose of this study was to report both the incidence and timing of lower extremity injuries during cadet basic training. We hypothesized that women, those with a history of injury, and those in underweight and obese body mass index (BMI) categories would sustain lower extremity musculoskeletal injury earlier in the training period than men, those without injury history, and those in the normal-weight BMI category. Study Design: Cohort study; Level of evidence, 2. Methods: Cadets from the class of 2022, arriving in 2018, served as the study population. Baseline information on sex and injury history was collected via questionnaire, and BMI was calculated from height and weight taken during week 1 at the United States Military Academy. Categories were underweight (BMI <20), middleweight (20-29.99), and obese (≥30). Injury surveillance was performed over the first 60 days of training via electronic medical record review and monitoring. Kaplan-Meier survival curves were used to estimate group differences in time to the first musculoskeletal injury. Cox proportional hazard regression was used to estimate hazard ratios (HRs). Results: A total of 595 cadets participated. The cohort was 76.8% male, with 29.9% reporting previous injury history and 93.3% having a BMI between 20 and 30. Overall, 16.3% of cadets (12.3% of male cadets and 29.7% of female cadets) experienced an injury during the follow-up period. Women experienced significantly greater incident injury than did men (P <.001). Separation of survival curves comparing the sexes and injury history occurred at weeks 3 and 4, respectively. Hazards for first musculoskeletal injury were significantly greater for women versus men (HR, 2.63; 95% CI, 1.76-3.94) and for those who reported a history of injury versus no injury history (HR, 1.76; 95% CI, 1.18-2.64). No differences were observed between BMI categories. Conclusion: Female cadets and those reporting previous musculoskeletal injury demonstrated a greater hazard of musculoskeletal injury during cadet basic training. This study did not observe an association between BMI and injury

    Multi-scale, multivariate community models improve designation of biodiversity hotspots in the Sunda Islands

    Get PDF
    Species occur in sympatric assemblages, bound together by ecological relationships and interspecific interactions. Borneo and Sumatra host some of the richest assemblages of biota worldwide. The region, however, faces the highest global deforestation rates, which seriously threaten its unique biodiversity. We used a large camera trap dataset that recorded data for 70 terrestrial species of mammals and birds, to explore the drivers of regional species richness patterns. Using a multi-scale, multivariate modelling framework which quantified the main environmental factors associated with patterns of biodiversity, while simultaneously assessing individual relationships of each species, we determined the ecological drivers of sampled biodiversity, and their contributions to community assemblages. We then mapped predicted species richness, evaluated the effectiveness of protected areas in securing biodiversity hotspots, performed gap analysis to highlight biodiverse areas lacking protection and compared our predictions with species richness maps produced by using IUCN range layers. Finally, we investigated the performance of each species as an indicator of sampled biodiversity. We demonstrate that biodiversity in Borneo and Sumatra is primarily affected by gradients of ecological and anthropogenic factors, and only marginally by topographic and spatial factors. In both islands, species are primarily associated with elevational gradients in vegetation and climate, leading to altitudinal zonation in niche separation as a major factor characterizing the islands' biodiversity. Species richness was highest in north-eastern Borneo and in western Sumatra. We found that most predicted biodiversity hotspots are not formally protected in either island; only 9.2 and 18.2% of the modelled species richness occurred within protected areas in Borneo and Sumatra, respectively. We highlighted that our prediction for Borneo performed better than, and differed drastically from, the IUCN species richness layer, while for Sumatra our modelled species richness layer and the IUCN one were similar, and both showed low predictive power. Our analysis suggests that common and generalist carnivores are the most effective indicators of sampled biodiversity and have high potential as focal, umbrella or indicator species to assist multi-species vertebrate conservation planning. Understanding existing drivers and patterns of biodiversity is critical to support the development of effective community conservation strategies in this rapidly changing region

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    An Optimization Problem with an Equilibrium Constraint in Urban Transport

    No full text
    corecore