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Abstract

Species occur in sympatric assemblages, bound together by ecological relationships
and interspecific interactions. Borneo and Sumatra host some of the richest assem-
blages of biota worldwide. The region, however, faces the highest global deforesta-
tion rates, which seriously threaten its unique biodiversity. We used a large camera
trap dataset that recorded data for 70 terrestrial species of mammals and birds, to
explore the drivers of regional species richness patterns. Using a multi-scale, multi-
variate modelling framework which quantified the main environmental factors asso-
ciated with patterns of biodiversity, while simultaneously assessing individual
relationships of each species, we determined the ecological drivers of sampled biodi-
versity, and their contributions to community assemblages. We then mapped pre-
dicted species richness, evaluated the effectiveness of protected areas in securing
biodiversity hotspots, performed gap analysis to highlight biodiverse areas lacking
protection and compared our predictions with species richness maps produced by
using IUCN range layers. Finally, we investigated the performance of each species
as an indicator of sampled biodiversity. We demonstrate that biodiversity in Borneo
and Sumatra is primarily affected by gradients of ecological and anthropogenic fac-
tors, and only marginally by topographic and spatial factors. In both islands, species
are primarily associated with elevational gradients in vegetation and climate, leading
to altitudinal zonation in niche separation as a major factor characterizing the
islands’ biodiversity. Species richness was highest in north-eastern Borneo and in
western Sumatra. We found that most predicted biodiversity hotspots are not for-
mally protected in either island; only 9.2 and 18.2% of the modelled species richness
occurred within protected areas in Borneo and Sumatra, respectively. We highlighted
that our prediction for Borneo performed better than, and differed drastically from,
the IUCN species richness layer, while for Sumatra our modelled species richness
layer and the IUCN one were similar, and both showed low predictive power. Our
analysis suggests that common and generalist carnivores are the most effective indi-
cators of sampled biodiversity and have high potential as focal, umbrella or indicator
species to assist multi-species vertebrate conservation planning. Understanding exist-
ing drivers and patterns of biodiversity is critical to support the development of
effective community conservation strategies in this rapidly changing region.

Introduction

Species co-occurring within biological communities are
affected individualistically by habitat factors and interactively

by interspecific interactions (Hutchinson, 1957). Nonetheless,
the simultaneous distributions of multiple species can also be
described by common factors (Davis et al., 2018; Haidir,
Macdonald & Linkie, 2018; Hearn et al., 2018b);
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co-occurrence patterns might reflect shared habitat require-
ments (Hearn et al., 2018b), be driven by biotic interactions
(Ovaskainen, Hottola & Siitonen, 2010), predator-prey
dynamics (Coleman & Hill, 2014) or be a consequence of
anthropogenic pressures (Wang, Allen & Wilmers, 2015),
and these factors might not operate in a mutually exclusive
way (Macdonald et al., 2020). Global intensification of habi-
tat loss necessitates a paradigmatic shift from single-species
conservation and management, towards multi-species
approaches (Macdonald et al., 2018a, 2012, 2020). There-
fore, a fundamental ecological question, with profound prac-
tical implications, is how biological communities are
assembled and what features control co-occurrence patterns.

This question is particularly relevant to the Sunda Islands
of Borneo and Sumatra. Sundaland, as this region is known,
is one of the Earth’s most important biodiversity hotspots,
whose exceptional species richness includes 1800 vertebrates,
of which 701 are endemic (Myers et al., 2000). However,
the biodiversity of Sundaland is seriously threatened by
anthropogenic factors, including deforestation (Cushman
et al., 2017) and habitat conversion (Wilcove et al., 2013),
both directly linked with the accelerating economic growth
of the region (Sodhi et al., 2004). South-east Asia shows the
highest rates of deforestation globally (Hansen et al., 2013),
and primary vegetation in Sundaland occupies only 7.8% of
its original extent (Myers et al., 2000). Additionally, defor-
estation in the region is expected to increase over the next
decade (Cushman et al., 2017).

Our work expands upon previous studies carried out in
smaller portions of the region, and focused mainly on the
felid guilds (e.g. Haidir et al., 2018; Hearn et al., 2018b),
not only by assessing vaster spatial extents, but also by
investigating the structure and spatial distribution of a larger,
more comprehensive sample of species. A similar study was
recently completed in mainland South-east Asia (Macdonald
et al., 2020) and a major focus of this paper is comparing
the patterns and drivers of biodiversity in the Sunda Islands
to those in mainland South-east Asia, using comparable data-
sets and methods.

Macdonald et al. (2020) highlighted that, in mainland
South-east Asia, landscape compositional factors were the
strongest drivers of species richness, and biodiversity was
strongly affected by the extensiveness of natural vegetation,
particularly forested areas, as well as anthropogenic factors
like protected and developed areas. Additionally, these
affected mainland South-east Asian biodiversity at multiple
spatial scales. Here, we applied a comparable multi-scale,
multivariate framework (sensu McGarigal et al., 2016, as
modified by Macdonald et al., 2020) to assess the joint
effect of landscape, anthropogenic, topographic and spatial
factors on the simultaneous presence of sampled species to
test the same hypotheses as in Macdonald et al. (2020)
related to species co-occurrence and habitat selection in Bor-
neo and Sumatra: (1) multi-species occurrence patterns are
primarily influenced by environmental factors (e.g. forested
areas, forest loss and protected areas) and only marginally
by topographic and spatial factors and, (2) the aforemen-
tioned factors influence species co-occurrence at multiple

spatial scales. Furthermore, Hughes (2017) and Macdonald
et al. (2020) found that the modelled geographic distribution
of terrestrial biodiversity in South-east Asia drastically differs
from the predictions made by using IUCN range layers;
therefore, we produced spatially explicit predictions of spe-
cies richness in Borneo and Sumatra, expecting that (3) our
species richness predictions for Borneo and Sumatra would
differ from the IUCN maps, and would have higher predic-
tive ability. In addition, Macdonald et al. (2020) highlighted
that the network of protected areas in mainland South-east
Asia preserved only a small portion of the modelled species
richness; therefore, we performed gap analysis using the cur-
rent protected areas network, hypothesizing that (4) existing
protected areas are relatively poor in location and insufficient
in extent to protect the main biodiversity hotspots. Addition-
ally, building upon the finding of Macdonald et al. (2020),
we expect that (5) species richness predictions are primarily
driven by common species and only marginally affected by
rare species, and that (6) carnivores are good indicators of
overall biodiversity, as demonstrated in other regions (Car-
roll, Noss & Paquet, 2001; Dalerum et al., 2008; Macdonald
et al., 2020).

Materials and methods

Data collection

From 2007 to 2016, our field teams conducted an extensive
camera trap survey targeting wild felid populations across
Borneo and Sumatra (Fig. 1; Table 1). Cameras were set
1.0–2.0 km apart, with two cameras per station set ~40 cm
above ground, and were deployed along natural ridgelines
and disused logging roads allowing for greater visibility
(Hearn et al., 2017; Macdonald et al., 2018a). The survey
provided a rich dataset giving additional insights into meso
and macro regional terrestrial biodiversity. All terrestrial
mammals and birds whose species was unambiguously iden-
tified were selected for the analysis. When a species could
not be clearly identified, we retained the data at a broader
taxonomic level (i.e. order, family or genus). Additionally, to
better assess the habitat factors driving species assemblages,
we also included data related to anthropogenic disturbances
captured by camera traps, such as people and domestic ani-
mals (i.e. domestic cats, domestic cattle and domestic dogs).
For each species, we used the number of detections per cam-
era trap station, reducing overestimation bias by discounting
records of the same species at the same camera station
within 1 h, except when animals were individually recogniz-
able (e.g. based on the pattern of spots and stripes for felids)
and when sex and/or age class were unambiguous.

Habitat covariates

We selected a preliminary set of 35 covariates considered
important for regional terrestrial biodiversity (Macdonald
et al., 2018a; Hearn et al., 2018b), including 19 landscape,
four anthropogenic, four topographic and eight spatial covari-
ates (Table 2). Additionally, we included camera effort as a
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Figure 1 Map of the study area, including the islands of Borneo (right) and Sumatra (left), showing the camera trap locations. Each location

contains one or more camera trap grids. Number and model of camera traps for each location are provided in Table 1.

Table 1 Sampling effort in Borneo and Sumatra. Shown are sampling locations per region, survey dates, extent of the surveyed areas,

number of camera trap stations per sampling location, total number of trap nights and average number of trap nights per camera trap

station, maximum and average number of species detected per sampling location, protected status of the sampling locations and camera

trap models. Protected status acronyms: No (not protected), NR (Nature Reserve), PF (Production Forest), NP (National Park), Pl (plantation),

CA (Conservation Area), WS (Wildlife Sanctuary), FR (Forest Reserve), WR (Wildlife Reserve). Camera trap model acronyms: CA (Cuddeback

Ambush IR), Pa3 (Panthera V3), SS (Snapshot Sniper), Re5 (Reconyx HC 500), Bu (Bushnell), Re8 (Reconyx PC 800), Pa4 (Panthera V4)

Regions

Sampling

locations Survey dates

Surveyed

area (km2)

Camera

trap

stations

Total trap

nights (mean)

Max species

detected

(mean)

Protected

status

Camera trap

model

Kalimantan Bawan 09/09/2012–26/11/2012 32.9 63 4070 (64.60) 4 (0.94) No CA

Belantikan 23/02/2014–17/06/2014 112.2 51 3846 (75.41) 8 (3.57) NR/PF CA

Kutai 12/12/2012–23/03/2013 88.9 52 3269 (62.87) 9 (3.37) NP CA

Lesan 15/07/2013–26/01/2014 70.8 73 10 057 (137.77) 11 (3.03) NR CA

Sungai Wain 17/05/2012–08/08/2012 69.6 78 4729 (60.63) 7 (3.54) NR CA

Sabah Crocker 06/10/2011–07/02/2012 149.7 35 4059 (115.97) 31 (17.77) NP Pa3/SS/Re5/Bu

Danum Palm 15/03/2009–07/07/2009 7.8 23 2214 (96.26) 21 (8.00) Pl SS

Danum Valley 24/03/2012–06/10/2012 157.0 79 5880 (74.43) 25 (15.13) CA Pa3/Re5/Re8

IJM 26/05/2011–18/08/2011 44.0 33 1855 (56.21) 15 (3.73) Pl Pa3/SS/Re5/Bu

Kinabatangan 24/07/2010–17/12/2010 359.5 68 4450 (65.44) 17 (7.81) WS SS/CA/Bu

Malua 09/07/2008–12/02/2009 102.8 38 3867 (101.76) 27 (14.26) FR SS

Sepilok 09/02/2011–25/05/2011 49.4 35 2067 (59.06) 17 (11.11) FR Pa3/SS/Re5/Bu

Tabin 18/09/2009–22/04/2010 144.3 74 6877 (92.93) 24 (15.53) WR SS/CA

Tawau 21/10/2012–30/12/2013 149.0 77 17 600 (228.57) 33 (20.12) NP Re5/Re8

Ulu Segama 24/05/2007–18/10/2007 60.1 22 2847 (129.41) 26 (18.27) FR SS

Sumatra Bungo 11/06/2014–11/11/2014 74.3 79 8405 (106.39) 14 (5.49) NP Pa4/CA

Ipuh 06/09/2015–24/12/2015 63.6 79 6276 (79.44) 17 (6.49) NP CA

Kambang 01/04/2015–08/07/2015 54.4 149 12 599 (84.56) 9 (2.81) NP CA

Linggau 10/01/2016–24/03/2016 47.5 120 7269 (60.58) 11 (3.55) NP CA

Muara Hemat 17/10/2014–05/02/2015 72.0 164 13 466 (82.11) 13 (4.83) NP CA

RKE 25/04/2015–10/08/2015 91.4 72 5586 (77.58) 18 (4.42) NP CA

Sipurak 24/11/2014–08/04/2015 80.0 80 7227 (90.34) 18 (6.25) NP CA

Total 24/05/2007–24/03/2016 2081.2 1544 138 515 (89.71) 33 (7.15)
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predictor variable, defined as the cumulative number of
nights in which camera traps were active. Similar to Mac-
donald et al. (2020), we kept the distinct covariates’ group-
ing (i.e. environmental, defined as the combination of
landscape and anthropogenic covariates, topographic, spatial
and camera effort), to evaluate the contribution of each of
them to sampled species detection counts.

Species-habitat relationships are known to be scale-
dependent (Cushman & McGarigal, 2002; Cushman &
McGarigal, 2004b; McGarigal et al., 2016). To investigate
the scales at which sampled biodiversity responded to habitat
features, we calculated each covariate at eight spatial scales,
by averaging the pixel values of the original raster layers
using circular buffers of 250, 500, 1000, 2000, 4000, 6000,
8000 and 10 000 m radii, centred on each camera trap loca-
tion. Scales were chosen to cover a wide range of beha-
vioural processes, describing different ways in which
sampled species could interact with environmental features
of the landscape, from fine-scale resource selection within
home ranges, to broad-scale selection of home ranges (Sim-
charoen et al., 2014; Hearn et al., 2018a).

To produce more biologically informative variables, we
calculated class- and landscape-level metrics in FRAGSTATS
(McGarigal et al., 2012) for discrete layers, and focal statis-
tics in ArcMap v10.6.1 (ESRI, 2018) for continuous layers,
using for both the software circular moving windows of radii
corresponding to the aforementioned spatial scales. At the
class level, defined as every patch type in the landscape (e.g.
every class in a land-cover layer), we calculated PLAND,
representing the percentage of the landscape occupied by a
specific class, and GYRATE_AM, providing a measure of
landscape continuity. At the landscape level, defined as the
combination of all classes in the patch mosaic (e.g. the entire
land-cover layer, comprising all cover classes simultane-
ously), we computed aggregation index (AI), edge density
(ED), contrast-weighted edge density (CWED), patch density
(PD) and largest patch index (LPI). These landscape metrics
were selected following past research showing they are par-
ticularly strong indicators of species occurrence patterns in
complex landscapes (Grand et al., 2004; Chambers et al.,
2016; Macdonald et al., 2020). For continuous layers we cal-
culated focal mean (FM) and standard deviation (SD). These
resulted in a total of 67 covariates (Table 2).

Scale optimization

Since interspecific relationships among species assemblages
are different between Borneo and Sumatra, we implemented
the modelling workflow previously applied by Macdonald
et al. (2020), and described in the next paragraphs, indepen-
dently for the two islands. We removed all poorly sampled
covariates (i.e. those occurring at <10% of camera stations)
to avoid assessing unrepresentative habitat features, since
zero-inflation of explanatory variables can negatively affect
parameter estimation (Martin et al., 2005).

To identify representative scales for sampled biodiversity,
we performed Canonical Correspondence Analysis (CCA;
Fig. 2a) (ter Braak, 1986; ter Braak & Prentice, 1988;

McGarigal, Cushman & Stafford, 2000) on randomly sampled
80% of the camera trap stations (we used the remaining 20%
to evaluate the ability of the species richness surface to cor-
rectly predict observed richness – see below), independently at
each scale for each covariate, using the cca function in the ve-
gan package (Oksanen et al., 2018) in R v3.5.1 (R Core Team,
2018). CCA is a multivariate modelling technique that
accounts for unimodal distribution of response variables,
which are expected in species presence patterns across broad
environmental gradients (Austin et al., 1994). CCA allowed us
to model species-habitat relationships simultaneously for all
sampled species and, at the same time, to account for the indi-
vidual contribution of each species to the modelled relation-
ships (Macdonald et al., 2020). For each covariate, at each
scale, we performed CCA using the number of detections of
the sampled species as response variables, and we identified
the optimal scale by selecting the scale whose CCA showed
the highest canonical eigenvalue (Borcard, Legendre & Dra-
peau, 1992). We then checked multicollinearity by calculating
Pearson’s correlation coefficient between all pairs of scale-
optimized covariates (Fig. 2b). When two covariates were
highly correlated (|r| ≥ 0.7), we removed the covariate whose
univariate CCA had the lower adjusted-R2 (Guisan & Zimmer-
mann, 2000). The final set of covariates was selected by per-
forming forward selection on the previously selected 80% of
camera trap stations, using the ordistep function in the vegan
package (Fig. 2c), independently on each group of covariates
(i.e. environmental, topographic and spatial) and, within the
multivariate context of the CCA, simultaneously for all sam-
pled species, retaining only those covariates significant at
P < 0.001 within each group (Cushman & McGarigal, 2002;
Cushman & McGarigal, 2004a).

We performed variance partitioning analysis (Fig. 2d) to
investigate the variance explained in the multivariate detec-
tion counts of sampled species by each group of covariates
(individual contribution), as well as by different combina-
tions of groups of covariates (joint contribution) (Borcard
et al., 1992; Cushman & McGarigal, 2004a, b), by using the
number of detections of the sampled species as response
variables and applying the varpart function in the vegan
package.

Species richness and model performance

We performed CCA between the number of detections of the
sampled species at the previously selected 80% of camera
trap stations and the final set of scale-optimized covariates
(Fig. 2e) to assess their contribution to the sampled species
detections, and interpreted the biplot to evaluate the interac-
tions of each species with specific habitat factors (Macdonald
et al., 2020). CCA biplots are graphical representations of
the multivariate results that simultaneously show both the
sampled species and the influence of the covariates, which
are shown as vectors pointing in the direction of increasing
value and with length proportional to their influence on pre-
dicted species composition and detection. The vectors’
lengths (i.e. the influence of the covariates on the species)
are given by the eigenvalues calculated in the CCA. Species

4 Animal Conservation �� (2022) ��–�� ª 2022 The Authors. Animal Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Table 2 Preliminary set of covariates and corresponding representative scales for biodiversity in Borneo and Sumatra. Additionally, the

description of the primary set of covariates selected for Borneo and Sumatra biodiversity models is provided. For the analyses, landscape

and anthropogenic covariates were merged into the macro-group of environmental covariates. We calculated class- and landscape-level

metrics in FRAGSTATS (McGarigal, Cushman & Ene, 2012) for discrete layers, and focal statistics in ArcMap v10.6.1 (ESRI, 2018) for

continuous layers. PLAND, represents the percentage of the landscape occupied by a specific class, GYRATE_AM is a measure of

landscape continuity. At the landscape level, we computed aggregation index (AI), edge density (ED), contrast-weighted edge density

(CWED), patch density (PD) and largest patch index (LPI). For continuous layers we calculated focal mean (FM) and standard deviation (SD).

All raster layers were first re-projected to Asia South Albers Equal Area Conic projection in ArcMap v10.6.1, by applying nearest neighbour

re-sampling technique for discrete layers and bilinear interpolation re-sampling technique for continuous layers. Then, by applying the same

re-sampling techniques, all raster layers were re-sampled to 250 m resolution

Class Covariate Source Metric

Borneo Sumatra

Best scale (m) Best scale (m)

Landscape Landcover Miettinen et al. (2012) AI 4000a 4000a

CWED 2000a 4000a

ED 2000a 4000a

PD 4000a 2000a

Lowland forests Miettinen et al. (2012) PLAND 4000a 8000a

GYRATE_AM 8000 10 000

Lowland mosaic areas Miettinen et al. (2012) PLAND 4000a 6000a

GYRATE_AM 1000a 6000a

Lower-montane forests Miettinen et al. (2012) PLAND 6000a 4000a

GYRATE_AM 6000a 2000a

Lowland open areas Miettinen et al. (2012) PLAND 2000a 6000b

GYRATE_AM 2000 8000

Mangroves Miettinen et al. (2012) PLAND 10 000 NAc

GYRATE_AM 4000a NAc

Montane mosaic areas Miettinen et al. (2012) PLAND NAc 2000a

GYRATE_AM NAc 2000

Montane open areas Miettinen et al. (2012) PLAND NAc 8000a

GYRATE_AM NAc 8000b

Palm plantations Miettinen et al. (2012) PLAND 2000 10 000a

GYRATE_AM 4000a 10 000

Peat swamp forests Miettinen et al. (2012) PLAND NAc NAc

GYRATE_AM NAc NAc

Plantation and regrowth Miettinen et al. (2012) PLAND 10 000a 2000a

GYRATE_AM 500a 1000

Upper-montane forests Miettinen et al. (2012) PLAND NAc 4000

GYRATE_AM NAc 4000a

Urban areas Miettinen et al. (2012) PLAND NAc NAc

GYRATE_AM NAc NAc

Water Miettinen et al. (2012) PLAND 6000a NAc

GYRATE_AM 4000b NAc

Continuous tree canopy cover Hansen et al. (2013) FM 4000a 4000a

SD 2000a 4000a

Tree canopy cover reclassified Hansen et al. (2013) AI 2000a 4000a

CWED 2000a 4000a

ED 2000a 4000a

LPI 4000a 4000a

PD 4000 4000a

Non-forested areas (0–20%) Hansen et al. (2013) PLAND 4000a 2000a

GYRATE_AM 1000a 2000a

Open forests (20–40%) Hansen et al. (2013) PLAND 6000a 6000a

GYRATE_AM 2000b 4000b

Closed forests (>40%) Hansen et al. (2013) PLAND 4000a 4000a

GYRATE_AM 6000a 6000b

Animal Conservation �� (2022) ��–�� ª 2022 The Authors. Animal Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5
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are represented in the biplot by dots, and distances from the
origin along the dot-product vector of each covariate are pro-
portional to the correlation between that species’ number of
detections and the value of that predictor variable.

To predict species richness, we first performed single-
species generalized linear models (GLMs) by using the package
stats in R v3.5.1, independently for each species (Fig. 2f; Sup-
porting Information Tables S1 and S2), using the standardized
final set of scale-optimized covariates from the CCA as predic-
tor variables, and accommodating the continuous discrete
response variables (i.e. species’ detections) by adopting a
quasi-Poisson distribution (Vincent & Haworth, 1983). We
opted for a quasi-Poisson distribution given that the data for
several species were overdispersed and did not meet the Pois-
son distribution’s assumption of equal mean and variance (Sup-
porting Information Figures S1 and S2).

We then used the parameter estimates from the single-
species GLMs in combination with the covariate layers
(Table 2) for Borneo and Sumatra to predict species counts
across the entire extent of both islands. The single-species
predictions were then converted to binary form, treating <1
value pixels as absences, and ≥1 value pixels as presences
(Fig. 2g). Finally, the single-species binary surfaces were
combined into a species richness layer by addition (Fig. 2h;
Grand et al., 2004; Macdonald et al., 2020).

Since the camera trap surveys did not sample the full gradi-
ents of all the chosen predictor variables over the entire study
area (e.g. most of the camera trap locations occurred within
protected areas, surveys did not cover the most remote areas
occurring at high elevations and camera traps were mainly
deployed in easily accessible areas like along disused logging
roads; Fig. 1), to avoid producing unreliable models by making
predictions on areas that were ecologically too different from
the sampling locations, we masked out the most different areas
by producing a Mahalanobis distance surface. The Mahalanobis
distance is the distance between two points in a multivariate
space, that we defined by using the layers of the environmental
factors that most likely determined a geographically biased
camera trap survey: tree canopy cover, protected areas, human
footprint, elevation, roughness, annual maximum temperature,
annual minimum temperature and annual precipitations. The
climatic covariates were derived from PRISM Climate
Group (2016), while the landscape, anthropogenic and topo-
graphic covariates’ sources were the same as the ones used to
model species richness (Table 2). The analysis, performed by
using the package dismo (Hijmans et al., 2017) in R v3.5.1,
provided a continuous surface of the distances in the multidi-
mensional space of each pixel from those where the camera
traps were deployed. We then binarized the continuous surface
by calculating the 20th percentile of the distribution of the

Table 2 Continued.

Class Covariate Source Metric

Borneo Sumatra

Best scale (m) Best scale (m)

Anthropogenic Human footprint WCS CIESIN (2005) FM 10 000 10 000a

SD 2000 10 000

Human population density CIESIN, CIAT (2016) FM 6000a 10 000a

SD 6000b 8000b

Forest loss Hansen et al. (2013) PLAND 10 000 4000

GYRATE_AM 8000a 2000a

Protected areas IUCN, UNEP-WCMC (2017) PLAND 4000 10 000a

GYRATE_AM 4000a 8000

Topographic Elevation Jarvis et al. (2008) FM 250 250

SD 8000a 10 000a

Roughness Jarvis et al. (2008), Evans et al. (2014) FM 4000a 10 000a

SD 6000a 10 000

Slope position Jarvis et al. (2008), Evans et al. (2014) FM 8000 10 000

SD 4000a 10 000a

Compound topographic index Jarvis et al. (2008), Evans et al. (2014) FM 2000a 500

SD 4000 4000

Spatial X NA NA NA NA

Y NA NA NAa NAa

X 9 Y NA NA NAa NAa

X2 NA NA NAa NAa

Y2 NA NA NAa NAa

X2 9 Y NA NA NAa NAa

X 9 Y2 NA NA NAa NAa

X2 9 Y2 NA NA NA NAa

Camera effort Camera trap nights NA NA NA NA

a Covariates excluded from the model after the multicollinearity analysis.
b Covariates excluded from the model after the forward selection analysis.
c Covariates excluded from the model because occurring in <10% of camera trap stations.
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Mahalanobis distances and excluded all pixels with distance
values equal to or higher than that value from our predictive
surfaces.

We produced the single-species models by using the previ-
ously randomly selected 80% of camera trap stations, keeping
the remaining 20% to evaluate the ability of the species rich-
ness surface to predict observed richness by adopting the
method applied by Macdonald et al. (2020): we computed the
number of species predicted by our species richness layer at the
camera trap stations used for validation, and performed GLM
with Poisson distribution between the predicted and the empiri-
cal number of species, and then calculated the Nagelkerke-
pseudo-R2 (Nagelkerke, 1991; Fig. 2i). The Nagelkerke-
pseudo-R2 is an index ranging from 0 to 1 that can be used to
compare the performances of different models. Additionally,
we assessed the performances of the single-species GLMs by
calculating their residual deviances, which indicate how well
the response variables (i.e. species’ detections) are predicted
when the predictor variables are included in the models. The
lower the residual deviance, the better the single-species GLM
explains the species detection data.

We compared the multi-species predictive surface with a
species richness surface produced by combining the IUCN geo-
graphic range layers of the sampled species (Fig. 2j) (IUCN,
2019) in ArcMap v10.6.1. To produce the IUCN surface, we

used the polygons of the extent of occurrence in which the spe-
cies were considered extant and resident. We evaluated the per-
formance of the IUCN surface by calculating the Nagelkerke-
pseudo-R2 between the empirical number of species at the cam-
era stations held out for validation and the number of species
predicted by the IUCN surface (Fig. 2i).

Protected areas effectiveness

We assessed the effectiveness of the current system of protected
areas network by calculating the ratio between the cumulative
number of species predicted within protected areas as defined
by the World Database on Protected Areas (WDPA; IUCN,
UNEP-WCMC, 2017) relative to the cumulative number of
species predicted in the entire islands (Grand et al., 2004; Mac-
donald et al., 2020), independently for Borneo and Sumatra.
Hence, we evaluated the performances of each protected area in
preserving predicted species richness (Fig. 2k).

Gap analysis

Additionally, we reclassified the species richness surface into
low, medium and high priority areas for conservation, based
on the percentiles distribution (>50th, >70th and >90th,
respectively, Macdonald et al., 2018a). Then, we identified

Figure 2 Workflow diagram of the methods applied to map the hotspots of terrestrial vertebrate biodiversity in Borneo and Sumatra using

camera trap species detection data. Using 80% of camera traps, we first performed canonical correspondence analysis (CCA) independently

for each covariate, for each scale, using the number of detections of the sampled species as response variable, to assess the most repre-

sentative spatial scales for sampled biodiversity (a). Then, we calculated Pearson’s correlation between all remaining covariates, and

removed those highly correlated at |r| ≥ 0.7 (b) and we obtained the final set of covariates by applying forward selection, retaining covariates

at P < 0.001 (c). We performed variance partitioning to evaluate the variance explained by different groups of covariates (d), and performed

CCA between the final set of scale-optimized covariates and the number of detections of the sampled species, producing biplots to evaluate

relationships of sampled species with covariates (e). We then produced single-species generalized linear models (GLMs), independently for

each species and predicted these across both islands (f), converted the predictions to binary by considering pixels with values <1 as

absences, and as presences otherwise (g), and produced a species richness layer by adding the single-species binary models (h). We evalu-

ated the performance of the species richness surface by using the 20% of camera traps held out for validation and calculating Nagelkerke-

pseudo-R2 (i). We also produced a layer of species richness by adding IUCN range layers for the sampled species (j), and evaluated the

IUCN species richness surface by using the same method used to evaluate the modelled one (i). Finally, we evaluated the effectiveness of

the current system of protected areas to preserve modelled species richness (k), and performed gap analysis evaluating the most biodiverse

areas lacking formal protection (l). Finally, we evaluated the importance of each species as an indicator to represent the distribution of the

overall sampled biodiversity (m).
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the most important biodiversity hotspots not formally pro-
tected by calculating the ratio between the cumulative num-
ber of species predicted in the most biodiverse areas (>90th
percentile) relative to the cumulative number of species pre-
dicted in the entire islands, independently for Borneo and
Sumatra (Fig. 2l).

Indicator species effectiveness

To assess the importance of each species as an indicator of
sampled biodiversity, we randomly sampled 1% of the pixels
from the multi-species surface and from each single-species
presence-absence surface and then performed GLMs indepen-
dently for each species, in which the predictor variable was
represented by the modelled number of species, while the
response variables were represented by each species’
presence-absence (Fig. 2m). The lower the residual deviance
of the model, the more important that species was for
explaining overall terrestrial vertebrate biodiversity (Macdon-
ald et al., 2020).

Results

Data collection

Camera traps were set in 15 sampling locations in Borneo
(five in the Indonesian provinces of Kalimantan and 10 in
the Malaysian state of Sabah) and in seven sampling loca-
tions in Sumatra, each covering an average area of
91.63 km2 (�14.97 SE) and yielding a total of 1544 camera
trap stations (801 in Borneo, of which 317 in Kalimantan
and 484 in Sabah, and 743 in Sumatra). We achieved a com-
bined sampling effort of 138 515 trap nights, with 77 687
trap nights in Borneo (mean = 96.99 � 2.12 SE) and 60 828
in Sumatra (mean = 81.87 � 0.72 SE; Table 1).

Species were recorded at all 22 sampling locations,
including 747 camera trap stations in Borneo (93.26%) and
662 in Sumatra (89.10%). The 54 camera trap stations that
failed to detect any species in Borneo were all in Kaliman-
tan. The maximum number of species detected at a single
camera trap station was 11 in Kalimantan, 33 in Sabah and
18 in Sumatra (Table 1). Overall, we sampled 58 species,
including 47 mammals and 11 terrestrial birds. Additionally,
we sampled 10 mammalian and two avian groups for which
we retained data at broader taxonomic levels. Not all the
species were detected in the two islands; total detections for
sampled species are reported in Supporting Information
Table S3. Moreover, we detected four types of anthropogenic
disturbance: domestic cats, domestic cattle, domestic dogs
and humans (Supporting Information Table S3). These
anthropogenic elements were included only in the multivari-
ate analyses as part of the response variable alongside the
sampled species, to assess the most representative spatial
scales, the covariates to be included in the final models and
to produce the biplots. We included these anthropogenic ele-
ments in order to evaluate their contribution to the species-
habitat relationships, as well as to assess their multivariate
relationships with sampled species, but they were not used

to produce the GLMs and the species richness surface,
because we only wanted to predict wild species richness pat-
terns.

Scale optimization

Ten covariates in Borneo and eight in Sumatra occurred at
<10% of camera trap stations and were excluded due to lack
of predictive power. Scale-optimization revealed that, on
average, vertebrates were associated with medium (2–6 km)
and broad (8–10 km) scale patterns. Four covariates in Bor-
neo (8.16%) and three in Sumatra (5.88%) were identified as
optimal at fine scales (≤1 km). Thirty-seven covariates in
Borneo (75.51%) and 30 in Sumatra (58.82%) were selected
at medium scales, while eight covariates in Borneo (16.33%)
and 18 in Sumatra (35.29%) were selected at broad scales
(Table 2).

We excluded 40 highly correlated covariates from Borneo
and 39 from Sumatra. Following forward selection, we
removed three covariates from Borneo and five from Suma-
tra, obtaining a final set of 15 and 16 covariates, respectively
(Table 2).

The final sets of covariates explained 23.9 and 10.4% of
absolute variance of the detection data in Borneo and Suma-
tra, respectively. Variance partitioning revealed that, in Bor-
neo, species detection was most strongly predicted by
camera effort (22% individual contribution of the single
group of covariates and 67% joint contribution of the group
of covariates with other groups of covariates), followed by
environmental covariates (17% individually and 49% jointly).
Variance explained by environmental covariates was in turn
shared between landscape covariates (6% both individually
and jointly) and anthropogenic covariates (11% both individ-
ually and jointly). Topographic and spatial covariates’ inde-
pendent contributions were comparatively lower (7 and 5%,
respectively), but their shared contributions were more sub-
stantial (42 and 13%, respectively; Fig. 3a). In Sumatra,
environmental covariates explained the greatest proportion of
relative variance (23% individually and 70% jointly). Vari-
ance explained by environmental covariates was shared
between landscape covariates (10% individually and 15%
jointly) and anthropogenic covariates (8% individually and
13% jointly). Comparatively, topographic and spatial covari-
ates explained less variance (8% individually and 55%
jointly, and 13% individually and 38% jointly, respectively;
Fig. 3b).

Species richness and model performance

CCA performed between the number of detections of the
sampled species and the final set of scale-optimized covari-
ates confirmed that species-habitat relationships were primar-
ily affected by environmental and topographic covariates. In
Borneo, elevation, patch density of tree cover, slope position
and lowland open areas, were the main factors positively
affecting species detections. However, anthropogenic factors,
like protected areas and forest loss, were also influential in
affecting species detections (Fig. 4a; Supporting Information
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Table S4). Similarly, in Sumatra species detection patterns
were most strongly associated with environmental factors
like upper-montane forests, plantation and regrowth and low-
land open areas, but also with topographic (elevation),
anthropogenic (forest loss) and spatial (longitude) covariates
(Fig. 4b; Supporting Information Table S5).

Analysis of the CCA biplots confirmed the positive asso-
ciation of many species with forests and elevation gradients.
In Borneo, the majority of species appeared to be relative
habitat generalists, as revealed by clustering at the centre of
the biplot (Fig. 4a). Three carnivore species (Hose’s civet
Diplogale hosei, Bornean ferret badger Melogale everetti and
masked palm civet Paguma larvata) showed strong affinity
for high elevations and mountainsides (as indicated by slope
position). Endangered flagship species were positively

associated with anthropogenic factors: Asian elephant Ele-
phas maximus was associated with palm plantations, while
banteng Bos javanicus and Bornean orangutan Pongo pyg-
maeus occurred in strong association with forest loss.

In Sumatra, elevation was an important driver of many spe-
cies including, from the most associated with high areas to the
least, mainland serow Capricornis sumatraensis, Salvadori’s
pheasant Lophura inornata, masked palm civet Paguma lar-
vata, yellow-throated marten Martes flavigula, civet species,
Sunda clouded leopard Neofelis diardi, partridge and pheasant
species, dhole Cuon alpinus and sambar Rusa unicolor
Fig. 4b). Generalist species, including Sunda leopard cat Prion-
ailurus javanensis, Malay crested fireback Lophura rufa, long-
tailed porcupine Trichys fasciculata and common long-tailed
macaque Macaca fascicularis, were positively associated with

Figure 3 Variance partitioning analyses for Borneo (a) and for Sumatra (b), showing the proportion of variance in the detections of the sam-

pled species explained in the Canonical Correspondence Analyses by different subsets of covariates. Shown are the relative values. Abso-

lute variance explained for Borneo = 0.239. Absolute residual variance for Borneo = 0.761. Absolute variance explained for Sumatra = 0.104.

Absolute residual variance for Sumatra = 0.896.
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Figure 4 Biplots resulting from the Canonical Correspondence Analyses between the number of detections of the sampled species and the

final sets of scale-optimized covariates, illustrating the relationships between species sampled in Borneo (a) and in Sumatra (b), and habitat

covariates. See Table 2 for covariate description and Supporting Information Table S3 for species codes. FM, focal mean; PD, patch density;

SD, standard deviation.
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lowland open areas and forest loss. Additionally, the critically
endangered Sunda pangolin Manis javanica was positively
associated with palm plantations and human footprint. Overall,
fewer species were clustered in the centre of the biplot, reveal-
ing a greater degree of specialization compared to Borneo.

Combining by addition the predicted occurrence surfaces
produced for each sampled species based on the results of the
single-species GLMs (Supporting Information Tables S1 and
S2), we predicted species richness across Borneo and Sumatra
(Fig. 5), compared it to the IUCN surfaces (Fig. 6) and evalu-
ated the explanatory and predictive power of the models. For
Borneo, analysis of the residual deviances of the single-species
models revealed that they had strong explanatory power, even
though the models for a few species revealed high residual
deviances (mean residual deviance = 1365.0, median residual
deviance = 767.8; Supporting Information Figure S3). Addi-
tionally, our species richness surface showed strong positive
relationships with empirical species richness based on the inde-
pendent holdout validation data (Nagelkerke-pseudo-R2 = 0.72,
P < 0.0001), while the IUCN surface performed poorly

(Nagelkerke-pseudo-R2 = 0.06, P = 0.003), and showed a con-
trasting geographic distribution of biodiversity (Fig. 6).

For Sumatra, the residual deviances revealed strong
explanatory power of the single-species models (mean residual
deviance = 564.6, median residual deviance = 251.1; Support-
ing Information Figure S4). However, our species richness sur-
face and the IUCN prediction were much more similar with
respect to the geographic distribution of biodiversity hotspots
than in Borneo (Fig. 6). Importantly, in Sumatra neither our
species richness surface nor the IUCN prediction were highly
predictive of observed species richness based on the holdout
validation data (Nagelkerke-pseudo-R2 = 0.007, P = 0.34 for
our species richness surface and Nagelkerke-pseudo-R2 =
0.002, P = 0.59 for the IUCN prediction).

Protected areas effectiveness

The evaluation of the effectiveness of protected areas
revealed that they preserved a relatively small proportion of
biodiversity; only 9.2 and 18.2% of the cumulative modelled

Figure 5 Predicted species richness in Borneo (right) and Sumatra (left), showing protected areas overlaid in black hash marks. Species rich-

ness predictions were based on single-species generalized linear models between the sampled species’ number of detections and the

scale-optimized covariates found important to describe overall sampled biodiversity geographic patterns in a Canonical Correspondence Anal-

ysis. Grey areas represent high human footprint. Black areas represent the most distinct regions from the sampled locations, as highlighted

by a Mahalanobis distance surface, which were excluded from predictions. Numbers represent codes of the main systems of protected

areas, as reported in Supporting Information Tables S6 and S7.
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species richness occurred within protected areas in Borneo
and Sumatra, respectively. In both islands, a small number
of protected areas provided for most of the protected biodi-
versity. In Borneo, Sebangau, Kutai and Crocker Range
National Parks represented the most important protected
areas, harbouring 1.20, 0.82 and 0.63% of the overall biodi-
versity, and 12.94, 8.91 and 6.84% of the protected biodiver-
sity, respectively (Supporting Information Table S6). The
aforementioned most important protected areas for Bornean
biodiversity occurred in Kalimantan, the Indonesian portion
of Borneo and in Sabah, in the Malaysian side of the island.
In Sumatra, Kerinci Seblat, Bukit Barisan Selatan and Ber-
bak Sembilang National Parks protected 8.17, 1.99 and
1.44% of the overall biodiversity, and 44.98, 10.95 and
7.91% of the protected biodiversity, respectively (Supporting
Information Table S7).

Gap analysis

The reclassification of the predictive surfaces into low, med-
ium and high biodiverse areas allowed us to highlight the
most critical areas for conservation (Fig. 7). In Borneo, the

Malaysian state of Sabah and the Indonesian provinces of
North and East Kalimantan were the regions where most of
the biodiversity hotspots occurred. However, most of them
fell outside the current system of protected areas (Fig. 7;
Supporting Information Table S8). In Sabah, a critically
important biodiverse area of more than 5500 km2 fell
entirely outside protected areas (Supporting Information
Table S8). In North and East Kalimantan, at least five distin-
guished biodiversity hotspots have been highlighted, and
none of them was protected (Fig. 7; Supporting Information
Table S8).

In Sumatra, the most important predicted biodiversity hot-
spots coincided with protected areas in the western mountain-
ous regions. Our results showed that in Sumatra there seems to
have been a more severe pattern of habitat loss which resulted
in biodiversity being more associated with, and constrained by,
protected areas than it is in Borneo. However, we also high-
lighted important hotspots outside protected areas (Fig. 7; Sup-
porting Information Table S8). Of these, the most important
ones surrounded and connected existing protected areas, like
the satellite hotspots connecting the Kerinci Seblat National
Park and the Bukit Barisan Selatan National Park. Additionally,

Figure 6 Predicted species richness in Borneo (right) and Sumatra (left) as obtained by summing the IUCN geographic range layers of the

sampled species. Protected areas are shown in black hash marks. Black areas represent the most distinct regions from the sampled loca-

tions, as highlighted by a Mahalanobis distance surface, which were excluded from the predictions.
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extensive areas of medium and low biodiversity occurred in the
southern parts of the island, and these currently almost com-
pletely lack protection.

Indicator species effectiveness

Indicator species effectiveness analysis revealed that lesser
oriental chevrotain Tragulus kanchil and Sunda leopard cat
Prionailurus javanensis were the best indicators of biodiver-
sity in Borneo and Sumatra, respectively. Surprisingly, rat
species were the second best indicator in both islands. In
Borneo, two civet species (banded civet Hemigalus der-
byanus and Malay civet Viverra tangalunga) were among
the top indicator species. Moonrat Echinosorex gymnura,
Sunda stink-badger Mydaus javanensis, thick-spined porcu-
pine Hystrix crassispinis and short-tailed mongoose Her-
pestes brachyurus were also strong indicators of biodiversity,
along with Sabah partridge Arborophila graydoni and other
partridge species (Supporting Information Table S9). In
Sumatra, similar to mainland South-east Asia (Macdonald

et al., 2020), various carnivores were among the top indica-
tors, including members of the Felidae (Sunda leopard cat
Prionailurus javanensis and Sunda clouded leopard Neofelis
diardi), Viverridae (masked palm civet Paguma larvata) and
Canidae (dhole Cuon alpinus) families. Other important indi-
cators of Sumatran biodiversity included bronze-tailed
peacock-pheasant Polyplectron chalcurum, moonrat Echi-
nosorex gymnura, bearded pig Sus barbatus and mainland
serow Capricornis sumatraensis (Supporting Information
Table S9).

Discussion

This study utilized the largest camera trap survey ever car-
ried out in Borneo and Sumatra to (1) assess multivariate
habitat relationships of terrestrial meso and mega vertebrate
communities, (2) quantify the relative contributions of differ-
ent factors driving community assemblages, (3) evaluate the
level of biodiversity protection, (4) highlight areas where
conservation actions should be prioritized, (5) compare

Figure 7 Predicted species richness in Borneo (right) and Sumatra (left), derived from the continuous species richness surface shown and

described in Fig. 5, and reclassified into low, medium and high priority areas based on the percentiles distribution of the species richness

values (>50th, >70th and >90th, respectively). Highlighted are the main biodiversity hotspots falling outside the current system of protected

areas. Protected areas are overlaid in black hash marks. Black areas represent the most distinct regions from the sampled locations, as high-

lighted by a Mahalanobis distance surface, which were excluded from the predictions. Numbers represent codes of the main unprotected

hotspots, as reported in Supporting Information Table S8.
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rigorously modelled species richness patterns with more
anecdotal knowledge about species distribution, and (6)
investigate efficacy of different species as biodiversity indica-
tors. The study has been conducted within a multivariate
context, meaning that we accounted for the community-wide
responses to habitat factors, while still considering the indi-
vidual preferences of sampled species. Our results provide
the most comprehensive assessment to date of the factors
affecting terrestrial vertebrate biodiversity and its spatial pat-
terns across Borneo and Sumatra.

Multi-scale selection of habitat factors

As hypothesized, we found that communities in Borneo and
Sumatra respond to habitat factors at different spatial scales.
Specifically, sampled species responded to habitat features
primarily at medium (2–6 km) to broad (8–10 km) scales,
confirming previous findings on mainland South-east Asian
biodiversity (Macdonald et al., 2020). Our findings corrobo-
rate general patterns seen in mainland South-east Asia (Mac-
donald et al., 2020), demonstrating, in particular, the
importance of extensive intact forest for maintaining high
species richness. We also found that anthropogenic factors
affect species at broad scales, as found by Hearn
et al. (2018b) and Macdonald et al. (2020), confirming the
broad negative effects that anthropogenic disturbance, partic-
ularly forest loss, has on biodiversity in South-east Asia and
in the Sunda Islands. Elevation was the only covariate
selected at the finest scale in both islands, consistent with
the findings reported by Hearn et al. (2018b), likely reflect-
ing the islands’ highly heterogeneous topography. Interest-
ingly, Macdonald et al. (2020) found elevation to be most
related to biodiversity in mainland South-east Asian at very
broad scales, likely reflecting the more extensive impact that
altitudinal factors have on biodiversity in wider landscapes.

Environmental predictors of community
assemblages

Variance in the multivariate detection counts of sampled spe-
cies explained for Borneo was comparable with other studies
using CCA with high species diversity (Palmer, 1993; ter
Braak & Verdonschot, 1995; Ohmann & Spies, 1998; Mac-
donald et al., 2020), while the same variance explained for
Sumatra, although lower, was in the 10–50% range of vari-
ance explained typically reported for CCA (Palmer, 1993).

As shown by the variance partitioning analysis, environ-
mental factors were major drivers of the Sunda Islands’ mul-
tivariate species assemblages, explaining the greatest
proportion of total variance for Sumatra and the second
greatest proportion of total variance for Borneo, reflecting
that landscape composition and configuration, along with
anthropogenic impacts on the landscape, strongly drive spe-
cies assemblage patterns. Topographic and spatial covariates
were overall less influential. However, CCA and relative
biplots highlighted that topographic factors, and especially
elevation, were nonetheless fundamental drivers of habitat
selection for several species, both in Borneo and Sumatra.

In Borneo, carnivores were associated with the elevation
gradient, supporting previous findings by Mathai
et al. (2016) and Mathai et al. (2019), predicting that three
endemic Bornean carnivores (Bornean ferret badger Melogale
everetti, Hose’s civet Diplogale hosei and Borneo bay cat
Catopuma badia), along with masked palm civet Paguma
larvata, tend to be associated with higher elevations. Simi-
larly, Hearn et al. (2018b) found strong relationships with
higher elevations and Sunda clouded leopard Neofelis diardi
occurrence in Sabah. The negative impact of human footprint
and forest loss was particularly evident for the critically
endangered Bornean orangutan Pongo pygmaeus and the
endangered banteng Bos javanicus. Bornean orangutan
Pongo pygmaeus is known to mainly occur in primary for-
ests and pristine forest habitats (Felton et al., 2003, Knop,
Ward & Wich, 2004), while banteng Bos javanicus in Bor-
neo prefers forest habitats as well as open grassland, mature
timber plantations and abandoned cultivated lands (Melletti
& Burton, 2014). However, we highlighted that in Borneo
these species were associated with lowland habitats that have
experienced extensive forest loss in recent decades, and their
association with deforested areas is indicative of the fact that
they persist only in areas with high degree of anthropogenic
disturbance. This likely reflects their obligate association
with lowland rainforest ecosystems which have had rapid
and extensive impacts from deforestation and forest degrada-
tion. Recent studies have suggested that both these species
might be more tolerant of deforestation than was previously
thought. For example, Ancrenaz et al. (2010), Meijaard
et al. (2010) and Davies et al. (2017), found that Bornean
orangutan Pongo pygmaeus has a degree of tolerance
towards disturbed forests and, as discussed above, it is
known that banteng Bos javanicus can be found in disturbed
habitats. However, the persistence of these species in areas
of heavy human footprint might reflect an extinction debt of
large recent changes which has yet to result in equilibrium
levels of population decline and local extinction. Therefore,
our results indicate that the ecological niches of the most
endangered species are currently strongly limited to areas of
their original ranges that have experienced the largest
impacts of forest loss, and highlight their vulnerability to
habitat loss in regions most vulnerable to deforestation. We
highlighted also the striking association between Asian ele-
phant Elephas maximus and palm plantations. Even though
the species is commonly found in diverse habitats ranging
from tropical evergreen and semi-evergreen forests to culti-
vated and secondary forests (Choudhury, 1999), this associa-
tion also reflects that deforestation and land use changes are
concentrated at lower elevations and flatter terrain, which are
both critical habitat elements for the species (Cushman
et al., 2017). Therefore, current Asian elephant Elephas max-
imus occurrence patterns likely indicate niche displacement
from optimal lowland forests, which are mostly converted to
oil palm and industrial timber plantations.

In Sumatra, we observed a greater range of ecological
specialization among sampled species, with higher elevation
forests emerging as particularly important for biodiversity. A
group of species including Sunda clouded leopard Neofelis
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diardi showed clear selection for high elevations and upper-
montane forests, with predicted occurrence concentrated in
the western mountainous region of Sumatra, in agreement
with habitat suitability models for Sunda clouded leopard
Neofelis diardi (Macdonald et al., 2018a) and for overall
biodiversity (Catullo et al., 2008). More generalist species
were associated with deforested lowland areas and this, cou-
pled with the absence of specialists in these habitats, demon-
strated the low suitability of disturbed areas for specialized
species. Additionally, as highlighted in Borneo, in Sumatra
we also found endangered flagship species to be associated
with disturbed habitats. Specifically, we found Sunda pan-
golin Manis javanica to be associated with oil palm planta-
tions and areas of higher human footprint, raising serious
concerns about the conservation status of this critically
endangered species, as this likely reflects the increased
human impacts in the highly productive and most accessible
lowland areas that provide critical habitat for this and other
endangered species.

Our results suggest that anthropogenic impacts in Borneo
and Sumatra have been so rapid and extensive that there is a
disequilibrium between the distribution of many species and
their habitat needs (e.g. a lag effect, Kaszta et al., 2020).
Hence, the association of several endangered flagship spe-
cies, such as Bornean orangutan Pongo pygmaeus and Asian
elephant Elephas maximus, with anthropogenic factors and
disturbed habitat, reflects the degree of perturbation of the
Sunda Islands, and must be a red flag about the conservation
of their delicate communities.

Indicator species

In both islands, rat species were the second best indicator of
biodiversity. However, the challenge of identifying individual
rat species from camera trap images limited our analysis to
the order level. We acknowledge this limitation and note that
it is very unlikely that all the rat species have the same
importance as indicators. In addition, we believe that this
result is influenced by the large number of generalist species
represented in this group. Future research is needed to clarify
the best indicators among rodents.

In Borneo, Viverridae were crucial indicators, with two
species (banded civet Hemigalus derbyanus and Malay civet
Viverra tangalunga) occurring among the best indicator spe-
cies, corroborating previous findings on the pivotal role of
this family for Bornean (Ross, Hearn & Macdonald, 2017)
and South-east Asian (Macdonald et al., 2020) biodiversity.

In Sumatra, we found carnivores to be the strongest over-
all indicators of species richness. Members from the main
carnivore families were among the best indicators, including
Felidae (Sunda leopard cat Prionailurus javanensis and
Sunda clouded leopard Neofelis diardi), Viverridae (masked
palm civet Paguma larvata) and Canidae (dhole Cuon alpi-
nus). Niche differentiation theory (Hardin, 1960) states that
if two or more species compete, niche differentiation is a
likely outcome to avoid extinction. Accordingly, and simi-
larly to what found in mainland South-east Asia (Macdonald
et al., 2020), we found a single member from each family

playing an important role as indicator; only the most com-
mon members appeared to be good indicators, while more
specialized and rarer species emerged as weaker candidates.

Mammalian carnivores have often been proposed as
umbrella species given their large habitat requirements and
high mobility (Noss et al., 1996; Carroll et al., 2001;
Dalerum et al., 2008). Despite the appeal of this proposition,
the assumption that ensuring habitat requirements for one
species would automatically preserve sympatric species has
been contested (e.g. Cushman et al., 2010). However, Carroll
et al. (2001), Roberge & Angelstam (2004), Cushman &
Landguth (2012) and Penjor et al. (2021) demonstrated that
conservation strategies based on combinations of multiple
umbrella species cover broader ranges of habitat gradients,
and can effectively ensure the protection of a higher fraction
of sympatric species. Our analysis confirms the importance
of carnivores as proxies of biodiversity and, in particular, of
the more common and less specialized ones, such as Sunda
stink-badger Mydaus javanensis in Borneo and Sunda leop-
ard cat Prionailurus javanensis in Sumatra. Additionally, in
a region as rich in endemism as the Sunda Islands, consider-
ing more than one carnivore within an umbrella grouping is
critical to maximize protection of the regional biodiversity.

Importance of empirical predictions

Biodiversity richness patterns, protected area effectiveness
and gap analysis are often assessed using species’ inferred
distribution layers or other proxies based on coarse-scale,
non-empirical data, such as IUCN range maps. It is critical,
therefore, to assess how they perform relative to optimized
empirically based models. For Borneo, our species richness
surface provided a much more reliable prediction of biodiver-
sity hotspots than did the IUCN surface. The IUCN surface,
in addition to having much lower Nagelkerke-pseudo-R2,
showed very different patterns of predicted species richness,
with biodiversity spread more evenly over the central regions
of Borneo. Worryingly, Hughes (2017) and Macdonald
et al. (2020) also found the IUCN surface of the mainland
South-east Asian biodiversity to drastically differ from the
prediction produced with empirical data, with the latter also
performing much better than the former. Since several studies
use IUCN range layers to provide conservation recommenda-
tions, we urge a thorough investigation of factors leading to
discrepancies between the expert-based maps and empirical
data-based assessments of the sort we have explored.

For Sumatra, our predictive surface and the IUCN map
showed similar distribution of biodiversity hotspots, and both
had low Nagelkerke-pseudo-R2, revealing weak predictive
power, which was surprising given the strong explanatory
power of the single-species models. We believe that the poor
predictive power is due to the disequilibrium between spe-
cies distributions and their habitat needs. In a perturbed eco-
logical system where species are associated with habitat
conditions because of anthropogenic pressure and not
because of ecological associations, species-habitat relation-
ships are difficult to define with precision, leading to weaker
predictions (Guisan & Thuiller, 2005).
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Additionally, a potential alternative, but not mutually exclu-
sive, reason for the weak predictive power in Sumatra, is the
spatial clustering of our camera trap surveys. In contrast to
Borneo, where sampling locations occurred across a wider set
of environmental gradients, in Sumatra camera traps have
been deployed only in portions of the western mountainous
region. In addition, both in Borneo and Sumatra, camera trap
locations were mainly clustered within protected areas, provid-
ing a further potential source of spatial bias. However, by
sampling within protected areas, we likely provided a more
realistic view on species richness patters, reflecting the
expected species-habitat relationships that would occur in
undisturbed contexts, without accounting for adverse effects
of human disturbance, poaching and other factors not associ-
ated with measured habitat factors. However, the camera trap
surveys could have still been inadequate to represent the range
of environmental conditions of the islands, which is known to
affect the ability to correctly identify species-habitat relation-
ships (Chiaverini et al., 2021). Therefore, we have minimized
the potential errors arising from the spatially biased survey by
masking the areas showing the strongest ecological differences
from the sampling locations in the multivariate environment
of the Mahalanobis distance surface. Future surveys focused
on unsampled areas across the full range of ecological gradi-
ents are of vital importance to better assess the distribution of
biodiversity in Borneo and Sumatra.

Conservation implications

Northern Borneo, specifically the Malaysian state of Sabah,
the Indonesian provinces of North and East Kalimantan, and
Brunei, are predicted to harbour the highest species richness
in Borneo. Interestingly, Raes et al. (2009) found the same
regions to be critical hotspots also for botanical species rich-
ness. These regions’ high species richness is associated with
moderate to higher elevations, rough topography and numer-
ous remaining patches of primary forest. While only a few
protected areas occur in this region, their critical importance
is clear. In Sabah, where heavy logging followed by land
conversion to oil palm plantations has altered the landscape,
the few protected areas are among those with the highest
values of protected biodiversity, such as Crocker Range
National Park, Tabin Wildlife Reserve – Mount Hatton Pro-
tection Forest Reserve and Ulu Kalumpang Protection Forest
Reserve – Tawau Hills Park. Also, Sabah harbours the high-
est levels of species richness outside of protected areas, with
vast unprotected lands that we identified as a biodiversity
hotspot. To assess the effectiveness of protected areas and
perform gap analysis, however, we evaluated protected areas
as those defined by the WDPA (IUCN, UNEP-WCMC,
2017) that, in Sabah, includes only areas assigned to Class 1
protection (Dudley et al., 2010). However, several other
areas assigned from Class 2 to 5 occur in Sabah and, even
though they are excluded from the WDPA, they cannot be
deforested. In addition, even though we only evaluated pro-
tected areas, it has to be highlighted the important role that
alternative conservation strategies such as sustainable forestry
practices have on preserving regional biodiversity (Fuller,

Jessup & Salim, 2004). Additionally, northern and eastern
Kalimantan, regions almost completely lacking protection,
harbour other critical biodiversity hotspots. Worryingly, this
is the area where Indonesia’s new capital will be developed
(Teo et al., 2020). Hence, extending the current system of
protected areas and the network of connectivity corridors in
northern Borneo is critical for preserving the biodiversity of
the island (Hearn et al., 2019; Kaszta et al., 2019). It is fun-
damental to highlight that, even though we did not assess
the central highlands of Borneo due to their ecological dif-
ferences from the areas that we sampled, which might have
resulted in producing unreliable prediction, those areas have
previously been found fundamental for Bornean biodiversity,
particularly for carnivores (Mathai et al., 2016; Macdonald
et al., 2018b), and future surveys at higher elevations are
important for covering a broader altitudinal range.

In Sumatra, the western mountainous regions harbour the
highest levels of species richness. However, we have to be
cautious in asserting strong conclusions based on our results
given the low predictive power of our species richness sur-
face. A similar pattern characterized by large patches of
suitable habitat along the western mountains, and smaller,
fragmented patches occurring throughout the central and
eastern Sumatran lowlands, was highlighted by Macdonald
et al. (2018a) for Sunda clouded leopard Neofelis diardi.
This pattern appears to be driven by anthropogenic factors,
with habitat loss and deforestation predominating in eastern
portions of the island and at lower elevations, and protected
areas concentrated in the western highlands. Forest loss and
subsequent conversion to oil palm plantations are the main
factors negatively affecting species occurrence by driving
habitat loss and fragmentation. Conversely, protected areas
are a vital factor contributing positively to species richness;
the main biodiversity hotspots in Sumatra occur within pro-
tected areas, such as Kerinci Seblat and Bukit Barisan Sela-
tan National Parks. Together, these protected areas harbour
more than 50% of predicted Sumatran biodiversity. How-
ever, in our analysis we excluded the northern portion of
the island due to its ecological differences from the loca-
tions that we sampled. In northern Sumatra, Gunung Leuser
National Park occurs, which is a critically important pro-
tected area and, even though in our work we did not assess
its contribution in harbouring regional biodiversity, future
studies at higher latitudes are strongly needed. Extending
the current network of protected areas in Sumatra is critical,
especially along the western mountains where we high-
lighted the most important unprotected hotspots. Establishing
additional protected areas in the southern lowlands is of the
essence where forest loss is a clear and imminent threat to
biodiversity.

Scope and limitations

Even though the camera trap survey we used in the current
work likely represents the most intense effort ever carried
out in Borneo and Sumatra to collect camera trap data for
meso and macro terrestrial fauna, a number of limitations to
our study have to be acknowledged.
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First, the camera trap survey did not sample the full gradi-
ents of all the environmental factors chosen to model species
richness. Ideally, sampling strategies should be designed to
identify the full range of gradients that are most influential
to species’ habitat selection processes, rather than being
biased towards a fraction of the full spectrum of environ-
mental conditions (Wessels et al., 1998). Failing to do so
might result in models with erroneous parameter estimates
and lower predictive performances (Chiaverini et al., 2021).
However, in our case, it was impossible to implement a ran-
domly stratified survey given the extent of the study area
and the inaccessibility of some regions. Therefore, we pro-
duced a Mahalanobis distance surface in order to mask the
regions of the study area that were more different from the
sampled ones, reducing in this way the risk of producing
unreliable predictions of species richness.

Additionally, another potential source of bias was repre-
sented by the imperfect and varying detection of sampled
species (Sollmann et al., 2013). Most of the camera trap
locations occurred within protected areas, where environmen-
tal conditions drastically differ from unprotected areas, where
anthropic pressures might significantly reduce the detectabil-
ity of several species (Lessa et al., 2017). In addition,
deploying camera traps mainly along natural ridgelines and
disused logging roads, might have determined an overestima-
tion bias of species that are more likely to use these areas
(e.g. felids), leading to underestimating smaller, rarer and
more cryptic species (Kolowski & Forrester, 2017). How-
ever, having modelled the Mahalanobis distance surface
accounting also for the influence of protected areas and
human footprint, we minimized this geographic bias. Addi-
tionally, the same survey protocol was adopted for all the
camera trap grids across Borneo and Sumatra, and this con-
sistency minimized the variations in detection probabilities
across sampling locations, reducing the potential bias in the
species-habitat relationships’ estimates.
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