774 research outputs found

    Crystallisation study of the Cu<sub>2</sub>ZnSnS<sub>4</sub> chalcogenide material for solar applications

    No full text
    Second generation thin-film chalcogenide materials, in particular CuInGa(S,Se)2 (CIGS) and CdTe, have been among the most promising and quickly became commercial candidates for large-scale PV manufacturing. These materials offer stable and efficient (above 10%) photovoltaic modules fabricated by scalable thin-film technologies and cell efficiencies above 20 % (CIGS). Indium-free kesterite-related materials such as Cu2ZnSnS4 have attracted significant research interest due to their similar properties to CIGS. In these materials, indium is replaced with earth-abundant zinc and tin metals. The quaternary semiconductor Cu2ZnSnS4(CZTS) is a relatively new photovoltaic material and is expected to be interesting for environmentally amenable solar cells, as its constituents are nontoxic and abundant in the Earth's crust. The CZTS thin films show p-type conductivity, a band gap of 1.44–1.51 eV that is ideal to achieve the highest solar-cell conversion efficiency, and relatively high optical absorption in the visible light range

    Fine structure of excitons in Cu2_2O

    Full text link
    Three experimental observations on 1s-excitons in Cu2_2O are not consistent with the picture of the exciton as a simple hydrogenic bound state: the energies of the 1s-excitons deviate from the Rydberg formula, the total exciton mass exceeds the sum of the electron and hole effective masses, and the triplet-state excitons lie above the singlet. Incorporating the band structure of the material, we calculate the corrections to this simple picture arising from the fact that the exciton Bohr radius is comparable to the lattice constant. By means of a self-consistent variational calculation of the total exciton mass as well as the ground-state energy of the singlet and the triplet-state excitons, we find excellent agreement with experiment.Comment: Revised abstract; 10 pages, revtex, 3 figures available from G. Kavoulakis, Physics Department, University of Illinois, Urban

    Development of wirelessly-powered, extracranial brain activator (ECBA) in a large animal model for the future non-invasive human neuromodulation

    Get PDF
    As transcranial electrical stimulation (tES) is an emerging and promising technique for neuromodulation, we developed a novel device; wirelessly-powered, extracranial brain activator (ECBA), which is mounted subcutaneously, and its neuromodulation effect was investigated. The oscillatory changes in electrocorticography (EcoG) were analyzed from two types of stimulation. Two weeks prior to the recording experiment, we underwent surgery for implantation of subdural strips and ECBA module over centroparietal regions of anesthetized beagles. Low-frequency stimulation (LFS) and subsequent high-frequency stimulation (HFS) protocols (600 pulses respectively) were applied. Then, the power changes before and after each stimulation in five different bands were compared. A significantly larger voltage difference with subcutaneous than transcutaneous stimulation measured at EcoG channels indicated a substantial current attenuation between the skin and skull. Compared with the baseline, all subjects showed consistently decreased delta power and increased gamma power after HFS. LFS also induced a similar, but opposite, pattern of power change in four beagles. The results from this study indicate that LFS and HFS with our novel ECBA can consistently and effectively modulate neural activity of the cortex, inducing neural inhibition and facilitation functions, respectively. Future studies are necessary to further ensuring a consistent efficacy and long-term safety.11Ysciescopu

    Self-intersection local time of planar Brownian motion based on a strong approximation by random walks

    Full text link
    The main purpose of this work is to define planar self-intersection local time by an alternative approach which is based on an almost sure pathwise approximation of planar Brownian motion by simple, symmetric random walks. As a result, Brownian self-intersection local time is obtained as an almost sure limit of local averages of simple random walk self-intersection local times. An important tool is a discrete version of the Tanaka--Rosen--Yor formula; the continuous version of the formula is obtained as an almost sure limit of the discrete version. The author hopes that this approach to self-intersection local time is more transparent and elementary than other existing ones.Comment: 36 pages. A new part on renormalized self-intersection local time has been added and several inaccuracies have been corrected. To appear in Journal of Theoretical Probabilit

    Finite Size and Current Effects on IV Characteristics of Josephson Junction Arrays

    Full text link
    The effects of finite size and of finite current on the current-voltage characteristics of Josephson junction arrays is studied both theoretically and by numerical simulations. The cross-over from non-linear to linear behavior at low temperature is shown to be a finite size effect and the non-linear behavior at higher temperature, T>TKTT>T_{KT}, is shown to be a finite current effect. These are argued to result from competition between the three length scales characterizing the system. The importance of boundary effects is discussed and it is shown that these may dominate the behavior in small arrays.Comment: 5 pages, figures included, to appear in PR

    The Role of Nonequilibrium Dynamical Screening in Carrier Thermalization

    Full text link
    We investigate the role played by nonequilibrium dynamical screening in the thermalization of carriers in a simplified two-component two-band model of a semiconductor. The main feature of our approach is the theoretically sound treatment of collisions. We abandon Fermi's Golden rule in favor of a nonequilibrium field theoretic formalism as the former is applicable only in the long-time regime. We also introduce the concept of nonequilibrium dynamical screening. The dephasing of excitonic quantum beats as a result of carrier-carrier scattering is brought out. At low densities it is found that the dephasing times due to carrier-carrier scattering is in picoseconds and not femtoseconds, in agreement with experiments. The polarization dephasing rates are computed as a function of the excited carrier density and it is found that the dephasing rate for carrier-carrier scattering is proportional to the carrier density at ultralow densities. The scaling relation is sublinear at higher densities, which enables a comparison with experiment.Comment: Revised version with additional refs. 12 pages, figs. available upon request; Submitted to Phys. Rev.

    Dynamic instabilities induced by asymmetric influence: Prisoners' dilemma game on small-world networks

    Full text link
    A two-dimensional small-world type network, subject to spatial prisoners' dilemma dynamics and containing an influential node defined as a special node with a finite density of directed random links to the other nodes in the network, is numerically investigated. It is shown that the degree of cooperation does not remain at a steady state level but displays a punctuated equilibrium type behavior manifested by the existence of sudden breakdowns of cooperation. The breakdown of cooperation is linked to an imitation of a successful selfish strategy of the influential node. It is also found that while the breakdown of cooperation occurs suddenly, the recovery of it requires longer time. This recovery time may, depending on the degree of steady state cooperation, either increase or decrease with an increasing number of long range connections.Comment: 5 pages, 6 figure

    Cognitive Ability and Cardiovascular Control in Intellectually and Developmentally Disabled People

    No full text
    Earlier, we examined positive effects of hyperoxic air on the cognitive ability of intellectually and developmentally disabled people (IDDP). In this study, correlation between cognitive performance in the visual matching task and heart rate (HR) was investigated under normal air conditions. Eighteen men (mean age 28.7 ± 5.0 year) and 22 women (mean age 35.5 ± 6.9 year) with an assessed disability level of 2.3 ± 0.6 participated. The experiment consisted of three phases, a total of 7 min, including the rest (3 min), control (2 min), and visual matching task 2 min phases. The HR in visual matching task phase increased, compared to those in the rest and control phases. The cognitive ability in the visual matching task correlated with the HR values; the response time showed a negative correlation with HR, while the accuracy rate showed a positive correlation. Thus, adaptive changes in cardiovascular regulation probably related to cognitive efforts and emotional excitation should be considered a noticeable factor influencing brain supply with oxygen in IDDP (similarly to healthy people). The result of this study agrees with the earlier obtained indications that hyperoxic air can positively affect the cognitive performance in IDDP.Раніше ми вивчали позитивні впливи повітря, збагаченого киснем, на когнітивні здатності людей з недостатнім інтелектуальним розвитком (НІР). У нашій роботі ми досліджували кореляцію між показниками когнітивної активності в тесті візуальної відповідності та частотою серцевих скорочень (ЧСС) у таких суб’єктів в умовах дихання нормальним повітрям. У тестах брали участь 18 чоловіків (середній вік 28.7 ± 5.0 року) та 22 жінки (35.5 ± 6.9 року) з оцінкою рівня інтелектуального розвитку 2.3 ± 0.6. Експеримент (загальна тривалість 7 хв) складався з трьох фаз: стан розслаблення (3 хв), контроль (2 хв) та тест візуальної відповідності (2 хв). Величини ЧСС у межах цього тесту порівняно з величинами в умовах розслаблення й контролю зростали. Показники когнітивних здібностей корелювали з величинами ЧСС; кореляція часу відповіді була негативною, а точності відповіді – позитивною. Отже, адаптивні зміни регуляції серцево-судинної системи, мабуть, пов’язані з когнітивними зусиллями та емоційним збудженням, є істотним фактором, який впливає на постачання мозку киснем у людей із НІР (як і у здорових людей). Результати нашої роботи узгоджуються з отриманими раніше свідоцтвами про те, що дихання повітрям, збагаченим киснем, позитивно впливає на когнітивні можливості людей із НІР

    Wavelets and graph CC^*-algebras

    Full text link
    Here we give an overview on the connection between wavelet theory and representation theory for graph CC^{\ast}-algebras, including the higher-rank graph CC^*-algebras of A. Kumjian and D. Pask. Many authors have studied different aspects of this connection over the last 20 years, and we begin this paper with a survey of the known results. We then discuss several new ways to generalize these results and obtain wavelets associated to representations of higher-rank graphs. In \cite{FGKP}, we introduced the "cubical wavelets" associated to a higher-rank graph. Here, we generalize this construction to build wavelets of arbitrary shapes. We also present a different but related construction of wavelets associated to a higher-rank graph, which we anticipate will have applications to traffic analysis on networks. Finally, we generalize the spectral graph wavelets of \cite{hammond} to higher-rank graphs, giving a third family of wavelets associated to higher-rank graphs

    Proximity induced metal/insulator transition in YBa2Cu3O7/La2/3Ca1/3MnO3Y Ba_2 Cu_3 O_7 / La_{2/3} Ca_{1/3} Mn O_3 superlattices

    Full text link
    The far-infrared dielectric response of superlattices (SL) composed of superconducting YBa2_{2}Cu3_{3}O7_{7} (YBCO) and ferromagnetic La0.67_{0.67}% Ca0.33_{0.33}MnO3_{3} (LCMO) has been investigated by ellipsometry. A drastic decrease of the free carrier response is observed which involves an unusually large length scale of dcrit^{crit}\approx 20 nm in YBCO and dcrit^{crit}\approx 10 nm in LCMO. A corresponding suppression of metallicity is not observed in SLs where LCMO is replaced by the paramagnetic metal LaNiO3_{3}. Our data suggest that either a long range charge transfer from the YBCO to the LCMO layers or alternatively a strong coupling of the charge carriers to the different and competitive kind of magnetic correlations in the LCMO and YBCO layers are at the heart of the observed metal/insulator transition. The low free carrier response observed in the far-infrared dielectric response of the magnetic superconductor RuSr2_{2}GdCu2_{2}O8_{8} is possibly related to this effect
    corecore