57 research outputs found

    Modal scattering at an impedance transition in a lined flow duct

    Get PDF
    An explicit Wiener-Hopf solution is derived to describe the scattering of duct modes at a hard-soft wall impedance transition in a circular duct with uniform mean flow. Specifically, we have a circular duct r = 1,-8 <x <8 with mean flow Mach number M > 0 and a hard wall along x <0 and a wall of impedance Z along x > 0. A minimum edge condition at x = 0 requires a continuous wall streamline r = 1 + h(x, t ), no more singular than h = O(x1/2) for x ¿ 0. A mode, incident from x <0, scatters at x = 0 into a series of reflected modes and a series of transmitted modes. Of particular interest is the role of a possible instability along the lined wall in combination with the edge singularity. If one of the "upstream" running modes is to be interpreted as a downstream-running instability, we have an extra degree of freedom in the Wiener-Hopf analysis that can be resolved by application of some form of Kutta condition at x = 0, for example a more stringent edge condition where h = O(x3/2) at the downstream side. The question of the instability requires an investigation of the modes in the complex frequency plane and therefore depends on the chosen impedance model, since Z = Z(¿) is essentially frequency dependent. The usual causality condition by Briggs and Bers appears to be not applicable here because it requires a temporal growth rate bounded for all real axial wave numbers. The alternative Crighton-Leppington criterion, however, is applicable and confirms that the suspected mode is usually unstable. In general, the effect of this Kutta condition is significant, but it is particularly large for the plane wave at low frequencies and should therefore be easily measurable. For ¿ ¿ 0, the modulus tends to |R001| ¿ (1 + M)/(1 - M) without and to 1 with Kutta condition, while the end correction tends to8without and to a finite value with Kutta condition. This is exactly the same behaviour as found for reflection at a pipe exit with flow, irrespective if this is uniform or jet flow

    Investigation of the Wear Properties of a Riblet Paint Structure on an Airbus A300-600ST Beluga

    No full text
    While the application of drag reducing riblets on aircraft in the past was done by an adhesive film, a new promising technique was developed by the Fraunhofer Institute IFAM. The riblets are imprinted very precisely into the paint on the aircraft. To investigate the durability of such a riblet structure, free flight tests on an Airbus A300-600ST Beluga were performed. According to a specified time schedule, samples from the aircraft were taken. This riblet samples were prepared to measure the aerodynamic properties in an appropriate test facility, the DLR oil channel. The preparation of the test samples consists of several steps like moulding, casting, three dimensional surface measurements and a rapid prototyping technique. The sample preparation chain is evaluated by means of a common numerical method. Results of the experimental investigation show the influence of the wear during the flight tests on the riblet surface

    Drag reducing surfaces

    No full text

    Turbulence Control

    No full text
    • …
    corecore