10 research outputs found

    Microfluidics as a tool to understand the build-up mechanism of exponential-like growing films

    No full text
    Microfluidics is used here for the first time to efficiently tune the growth conditions for understanding the build-up mechanism of exponentially growing polyelectrolyte (PE) films. The velocity of PE supply and time of interaction can be successfully altered during the layer-by-layer assembly. Another advantage of this method is that the deposition of poly-L-lysine/hyaluronic acid (PLL/HA) films in microchannels can be monitored online by fluorescence microscopy. The study demonstrates that PE mass transport to the film surface and diffusion in the film are key parameters affecting PLL/HA film build-up. Increase of PE supply rate results in a change in the transition (exponential-to-linear growth) towards higher number of deposition steps, thus indicating a mass transport-mediated growth mechanism

    3d localization and diffusion of proteins in polyelectrolyte multilayers

    No full text
    The interaction of diverse biomaterials with surfaces is more crucial than ever for biomedical applications to ensure efficiency and reproducibility. Very interesting surface materials are micrometer-thick polyelectrolyte multilayers. Not only their surface but also the bulk can be loaded with biomaterials like proteins or DNA for various purposes. Therefore, we established a method to analyze the lateral and vertical distribution of fluorescently labelled proteins of various size and charge in polyelectrolyte films composed of poly(L-lysine) and hyaluronic acid by confocal laser scanning microscopy. This approach enables us to measure the diffusion coefficients of the proteins via fluorescence recovery after photobleaching as a function of their vertical position in the film and facilitates the understanding of molecular interactions in the film with a high resolution in both space and time. As a result, we confirm that protein loading in the film is driven by electrostatic interactions - uncharged dextran molecules of 10 and 500 kDa do not diffuse into the film. Proteins of different sizes (3-11 nm) can diffuse relatively fast (D = 2-4 mm(2) s(-1)) independent of their net charge, indicating complex interpolymer interactions. This approach is a new powerful experimental tool to design the polyelectrolyte multilayers for bio-applications by finding a relationship between intermolecular interactions and mobility and availability of biomolecules to biological samples (e.g. cells) or detection units (e.g. biosensors)

    Porous Inorganic and Hybrid Systems for Drug Delivery: Future Promise in Combatting Drug Resistance and Translation to Botanical Applications

    No full text
    corecore