29 research outputs found

    Matrix Ernst potentials for EMDA with multiple vector fields

    Get PDF
    We show that the Einstein-Maxwell-Dilaton-Axion system with multiple vector fields (bosonic sector of the D=4, N=4 supergravity) restricted to spacetimes possessing a non-null Killing vector field admits a concise representation in terms of the Ernst-type matrix valued potentials. A constructive derivation of the SWIP solutions is given and a colliding waves counterpart of the DARN-NUT solution is obtained. SU(m,m) chiral representation of the two-dimensionally reduced system is derived and the corresponding Kramer-Neugebauer-type map is presented.Comment: Latex file, no figure

    Impurity-induced dephasing of Andreev states

    Full text link
    A study is presented concerning the influence of flicker noise in the junction transparency on coherent transport in Andreev states. The amount of dephasing is estimated for a microwave-activated quantum interferometer. Possibilities of experimentally investigating the coupling between a superconducting quantum point contact and its electromagnetic environment are discussed.Comment: 8 pages, 4 figure

    Possible symmetries of the superconducting order parameter in a hexagonal ferromagnet

    Full text link
    We study the order parameter symmetry in a hexagonal crystal with co-existing superconductivity and ferromagnetism. An experimental example is provided by carbon-based materials, such as graphite-sulfur composites, in which an evidence of such co-existence has been recently discovered. The presence of a non-zero magnetization in the normal phase brings about considerable changes in the symmetry classification of superconducting states, compared to the non-magnetic case.Comment: 4 pages, REVTe

    de Sitter spacetime: effects of metric perturbations on geodesic motion

    Full text link
    Gravitational perturbations of the de Sitter spacetime are investigated using the Regge--Wheeler formalism. The set of perturbation equations is reduced to a single second order differential equation of the Heun-type for both electric and magnetic multipoles. The solution so obtained is used to study the deviation from an initially radial geodesic due to the perturbation. The spectral properties of the perturbed metric are also analyzed. Finally, gauge- and tetrad-invariant first-order massless perturbations of any spin are explored following the approach of Teukolsky. The existence of closed-form, i.e. Liouvillian, solutions to the radial part of the Teukolsky master equation is discussed.Comment: IOP macros, 10 figure

    The Crystallography of Color Superconductivity

    Get PDF
    We develop the Ginzburg-Landau approach to comparing different possible crystal structures for the crystalline color superconducting phase of QCD, the QCD incarnation of the Larkin-Ovchinnikov-Fulde-Ferrell phase. In this phase, quarks of different flavor with differing Fermi momenta form Cooper pairs with nonzero total momentum, yielding a condensate that varies in space like a sum of plane waves. We work at zero temperature, as is relevant for compact star physics. The Ginzburg-Landau approach predicts a strong first-order phase transition (as a function of the chemical potential difference between quarks) and for this reason is not under quantitative control. Nevertheless, by organizing the comparison between different possible arrangements of plane waves (i.e. different crystal structures) it provides considerable qualitative insight into what makes a crystal structure favorable. Together, the qualitative insights and the quantitative, but not controlled, calculations make a compelling case that the favored pairing pattern yields a condensate which is a sum of eight plane waves forming a face-centered cubic structure. They also predict that the phase is quite robust, with gaps comparable in magnitude to the BCS gap that would form if the Fermi momenta were degenerate. These predictions may be tested in ultracold gases made of fermionic atoms. In a QCD context, our results lay the foundation for a calculation of vortex pinning in a crystalline color superconductor, and thus for the analysis of pulsar glitches that may originate within the core of a compact star.Comment: 41 pages, 13 figures, 1 tabl

    Higher order WKB corrections to black hole entropy in brick wall formalism

    Full text link
    We calculate the statistical entropy of a quantum field with an arbitrary spin propagating on the spherical symmetric black hole background by using the brick wall formalism at higher orders in the WKB approximation. For general spins, we find that the correction to the standard Bekenstein-Hawking entropy depends logarithmically on the area of the horizon. Furthermore, we apply this analysis to the Schwarzschild and Schwarzschild-AdS black holes and discuss our results.Comment: 21 pages, published versio

    Effect of different fuels on structural, thermo and photoluminescent properties of Gd2O3 nanoparticles

    Get PDF
    Gd2O3 nanoparticles (27–60 nm) have been synthesized by the low temperature solution combustion method using citric acid, urea, glycine and oxalyl dihydrazide (ODH) as fuels in a short time. The structural and luminescence properties have been carried out using powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), Raman, UV–Vis, photoluminescence (PL) and thermoluminescence (TL) techniques. The optical band gap values were estimated for as formed and 800 °C calcined samples. The band gap values in as-formed and calcined samples were found to be in the range 4.89–5.59 eV. It is observed that, the band gap values are lower for as-formed products and it has been attributed to high degree of structural defects. However, in calcined samples, structure becomes more order with reduced structure defects. Upon 270 nm excitation, deep blue UV-band at ∼390 nm along with blue (420–482 nm), green (532 nm) and red emission (612 nm) was observed. The 390 nm emission peak may be attributed to recombination of delocalized electron close to the conduction band with a single charged state of surface oxygen vacancy. TL measurements were carried out on Gd2O3 prepared by different fuels by irradiating with γ-rays (1 kGy). A well resolved glow peak at 230 °C was observed for all the samples. It is observed that TL intensity is found to be higher in for urea fuel when compared to others. From TL glow curves the kinetic parameters were estimated using Chen’s peak shape method and results are discussed in detail
    corecore