41 research outputs found

    Direct sampling of the Susskind-Glogower phase distributions

    Full text link
    Coarse-grained phase distributions are introduced that approximate to the Susskind--Glogower cosine and sine phase distributions. The integral relations between the phase distributions and the phase-parametrized field-strength distributions observable in balanced homodyning are derived and the integral kernels are analyzed. It is shown that the phase distributions can be directly sampled from the field-strength distributions which offers the possibility of measuring the Susskind--Glogower cosine and sine phase distributions with sufficiently well accuracy. Numerical simulations are performed to demonstrate the applicability of the method.Comment: 10 figures using a4.st

    Measuring the elements of the optical density matrix

    Get PDF
    Most methods for experimentally reconstructing the quantum state of light involve determining a quasiprobability distribution such as the Wigner function. In this paper we present a scheme for measuring individual density matrix elements in the photon number state representation. Remarkably, the scheme is simple, involving two beam splitters and a reference field in a coherent state.Comment: 6 pages and 1 figur

    Quantum State Tomography of Complex Multimode Fields using Array Detectors

    Get PDF
    We demonstrate that it is possible to use the balanced homodyning with array detectors to measure the quantum state of correlated two-mode signal field. We show the applicability of the method to fields with complex mode functions, thus generalizing the work of Beck (Phys. Rev. Letts. 84, 5748 (2000)) in several important ways. We further establish that, under suitable conditions, array detector measurements from one of the two outputs is sufficient to determine the quantum state of signals. We show the power of the method by reconstructing a truncated Perelomov state which exhibits complicated structure in the joint probability density for the quadratures.Comment: 14 pages text and 3 figures. To be submitted to PR

    Direct sampling of exponential phase moments of smoothed Wigner functions

    Get PDF
    We investigate exponential phase moments of the s-parametrized quasidistributions (smoothed Wigner functions). We show that the knowledge of these moments as functions of s provides, together with photon-number statistics, a complete description of the quantum state. We demonstrate that the exponential phase moments can be directly sampled from the data recorded in balanced homodyne detection and we present simple expressions for the sampling kernels. The phase moments are Fourier coefficients of phase distributions obtained from the quasidistributions via integration over the radial variable in polar coordinates. We performed Monte Carlo simulations of the homodyne detection and we demonstrate the feasibility of direct sampling of the moments and subsequent reconstruction of the phase distribution.Comment: RevTeX, 8 pages, 6 figures, accepted Phys. Rev.

    Quantum key distribution using non-classical photon number correlations in macroscopic light pulses

    Get PDF
    We propose a new scheme for quantum key distribution using macroscopic non-classical pulses of light having of the order 10^6 photons per pulse. Sub-shot-noise quantum correlation between the two polarization modes in a pulse gives the necessary sensitivity to eavesdropping that ensures the security of the protocol. We consider pulses of two-mode squeezed light generated by a type-II seeded parametric amplification process. We analyze the security of the system in terms of the effect of an eavesdropper on the bit error rates for the legitimate parties in the key distribution system. We also consider the effects of imperfect detectors and lossy channels on the security of the scheme.Comment: Modifications:added new eavesdropping attack, added more references Submitted to Physical Review A [email protected]

    Hyperbolic phase and squeeze-parameter estimation

    Get PDF
    We define a new representation, the hyperbolic phase representation, which enables optimal estimation of a squeeze parameter in the sense of quantum estimation theory. We compare the signal-to-noise ratio for such measurements, with conventional measurement based on photon counting and homodyne detection. The signal-to-noise ratio for hyperbolic phase measurements is shown to increase quadratically with the squeezing parameter for fixed input power

    Nonclassical correlations of photon number and field components in the vacuum state

    Get PDF
    It is shown that the quantum jumps in the photon number n from zero to one or more photons induced by backaction evasion quantum nondemolition measurements of a quadrature component x of the vacuum light field state are strongly correlated with the quadrature component measurement results. This correlation corresponds to the operator expectation value which is equal to one fourth for the vacuum even though the photon number eigenvalue is zero. Quantum nondemolition measurements of a quadrature component can thus provide experimental evidence of the nonclassical operator ordering dependence of the correlations between photon number and field components in the vacuum state.Comment: 13 pages, 3 figures, corrections of omissions in equations (6) and (25). To be published in Phys. Rev.

    Quantum State Reconstruction of Many Body System Based on Complete Set of Quantum Correlations Reduced by Symmetry

    Full text link
    We propose and study a universal approach for the reconstruction of quantum states of many body systems from symmetry analysis. The concept of minimal complete set of quantum correlation functions (MCSQCF) is introduced to describe the state reconstruction. As an experimentally feasible physical object, the MCSQCF is mathematically defined through the minimal complete subspace of observables determined by the symmetry of quantum states under consideration. An example with broken symmetry is analyzed in detail to illustrate the idea.Comment: 10 pages, n figures, Revte

    Wigner Functions on a Lattice

    Get PDF
    The Wigner functions on the one dimensional lattice are studied. Contrary to the previous claim in literature, Wigner functions exist on the lattice with any number of sites, whether it is even or odd. There are infinitely many solutions satisfying the conditions which reasonable Wigner functions should respect. After presenting a heuristic method to obtain Wigner functions, we give the general form of the solutions. Quantum mechanical expectation values in terms of Wigner functions are also discussed.Comment: 11 pages, no figures, REVTE

    Homodyne detection for measuring internal quantum correlations of optical pulses

    Full text link
    A new method is described for determining the quantum correlations at different times in optical pulses by using balanced homodyne detection. The signal pulse and sequences of ultrashort test pulses are superimposed, where for chosen distances between the test pulses their relative phases and intensities are varied from measurement to measurement. The correlation statistics of the signal pulse is obtained from the time-integrated difference photocurrents measured.Comment: 7 pages, A4.sty include
    corecore