26 research outputs found

    Sfermion masses in the supersymmetric economical 3-3-1 model

    Full text link
    Sfermion masses and eigenstates in the supersymmetric economical 3-3-1 model are studied. By lepton number conservation, the exotic squarks and superpartners of ordinary quarks are decoupled. Due to the fact that in the 3-3-1 models, one generation of quarks behaves differently from other two, by R-parity conservation, the mass mixing matrix of the squarks in this model are smaller than that in the Minimal Supersymmetric Standard Model (MSSM). Assuming substantial mixing in pairs of highest flavours, we are able to get mass spectrum and eigenstates of all the sfermions. In the effective approximation, the slepton mass splittings in the first two generations, are consistent with those in the MSSM, namely: m^2_{\tilde{l}_L} - m^2_{\tilde{\nu}_{l L}} = m_W^2 \cos 2\ga (l=e,μ)(l=e, \mu). In addition, within the above effective limit, there exists degeneracy among sneutrinos in each multiplet: mν~lL2=mν~lR2m^2_{\tilde{\nu}_{l L}} = m^2_{\tilde{\nu}_{l R}}. In contradiction to the MSSM, the squark mass splittings are different for each generation and not to be m_W^2 \cos 2\ga.Comment: 34 pages, 2 figures, Revised version in which D-term and F-term contributions are slightly change

    Understanding the barriers to integrating maternal and mental health at primary health care in Vietnam

    Get PDF
    The prevalence of common perinatal mental disorders in Vietnam ranges from 16.9% to 39.9%, and substantial treatment gaps have been identified at all levels. This paper explores constraints to the integration of maternal and mental health services at the primary healthcare level and the implications for the health system’s responsiveness to the needs and expectations of pregnant women with mental health conditions in Vietnam. As part of the RESPONSE project, a three-phased realist evaluation study, we present Phase One findings which employed systematic and scoping literature reviews, and qualitative data collection (focus groups and interviews) with key health system actors, in Bac Giang province, Vietnam, to understand the barriers to maternal mental healthcare provision, utilisation, and integration strategies. A four-level framing of the barriers to integrating perinatal mental health services in Vietnam was used in reporting findings, which comprised individual, socio-cultural, organisational, and structural levels. At the socio-cultural and structural levels, these barriers included: cultural beliefs about the holistic notion of physical and mental health, stigma towards mental health, biomedical approach to healthcare services, absence of comprehensive mental health policy, and a lack of mental health workforce. At the organisational level, there was absence of clinical guidelines on the integration of mental health in routine antenatal visits, a shortage of staff, and poor health facilities. Finally, at the provider level, a lack of knowledge and training on mental health was identified. The integration of mental health into routine antenatal visits at the primary care level has the potential help to reduce stigma towards mental health and improve health system responsiveness by providing services closer to the local level, offering prompt attention, better choice of services, and better communication while ensuring privacy and confidentiality of services. This can improve the demand for mental health services and help reduce the delay of care-seeking

    Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells

    Get PDF
    The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis

    PCN154 Challenges Posed by Patient Crossover for Cost-Effectiveness Analysis of Oncology Products: A Case Study in Metastatic Pancreatic Cancer

    Get PDF

    A joint scheduling and power control scheme for hybrid I2V/V2V networks

    No full text
    In automotive infotainment systems, vehicles using the applications are serviced via continuous infrastructure-to-vehicle (I2V) communications. Additionally, the I2V communications can be combined with vehicle-to-vehicle (V2V) connectivity owing to the small area covered by road side units (RSUs). However, dozens of vehicles have to compete for limited bandwidth when they request service simultaneously in the covered area. In this paper, we propose a joint scheduling and power control scheme for I2V and V2V links in the RSUs' coverage range. Mapping the I2V and V2V links to tuple-links, we formulate a mixed-integer nonlinear programming (MINLP) problem where frequency scheduler and power controller for those tuple-links are jointly designed. Then, we employ the delayed column generation technique and the transmission pattern definition to decompose the MINLP problem into a transmission pattern scheduling problem, as well as a power control problem. Therein, the transmission pattern scheduling problem is solved by linear programming while a greedy power control algorithm is developed. Simulation results with practical parameter settings show that our proposed scheme outperforms several conventional schemes in terms of service disruption and achieved throughput while maintaining throughput fairness among the requesting vehicles. In particular, a high channel number, a small power level number, and a large buffer size at the requesting vehicles are shown to be helpful for our proposed scheme.Bach Long Nguyen, Duy Trong Ngo, Minh N. Dao, Quang-Thang Duong, and Minoru Okad

    Optically switchable transistors comprising a hybrid photochromic molecule/n-type organic active layer

    No full text
    Organic semiconductors can be easily combined with other molecular building blocks in order to fabricate multifunctional devices, in which each component conveys a specific (opto)electronic function. We have fabricated photoswitchable hybrid thin-film transistors based on an active bi-component material, consisting of an n-type fullerene derivative and a photochromic diarylethene that possesses light-tunable energy levels. The devices can be gated in two independent ways by either using an electrical stimulus via the application of a voltage to the gate electrode or an optical stimulus causing interconversion of the diarylethene molecules between their two isomers. Fine control over the device output current is achieved by engineering the diarylethenes\u27 LUMO that can act as an intra-gap state controlled by a distinct wavelength in the UV or in the visible range. Importantly, the devices based on a mixed diarylethene/fullerene active layer preserve the high mobility of the pristine semiconductor. This journal i
    corecore