57 research outputs found

    IDEOLOG: A Program for Filtering Econometric Data - A Synopsis of Alternative Methods

    Get PDF
    An account is given of various filtering procedures that have been implemented in a computer program, which can be used in analysing econometric time series. The program provides some new filtering procedures that operate primarily in the frequency domain. Their advantage is that they are able to achieve clear separations of components of the data that reside in adjacent frequency bands in a way that the conventional time-domain methods cannot. Several procedures that operate exclusively within the time domain have also been implemented in the program. Amongst these are the bandpass filters of Baxter and King and of Christiano and Fitzgerald, which have been used in estimating business cycles. The Henderson filter, the Butterworth filter and the Leser or Hodrickā€“Prescott filter are also implemented. These are also described in this paper. Econometric filtering procedures must be able to cope with the trends that are typical of economic time series. If a trended data sequence has been reduced to stationarity by differencing prior to its filtering, then the filtered sequence will need to be re-inflated. This can be achieved within the time domain via the summation operator, which is the inverse of the difference operator. The effects of the differencing can also be reversed within the frequency domain by recourse to the frequency-response function of the summation operator.

    Investigating Economic Trends And Cycles

    Get PDF
    Methods are described for extracting the trend from an economic data sequence and for isolating the cycles that surround it. The latter often consist of a business cycle of variable duration and a perennial seasonal cycle. There is no evident point in the frequency spectrum where the trend ends and the business cycle begins. Therefore, unless it can be represented by a simple analytic function, such as an exponential growth path, there is bound to be a degree of arbitrariness in the definition of the trend. The business cycle, however defined, is liable to have an upper limit to its frequency range that falls short of the Nyquist frequency, which is the maximum observable frequency in sampled data. This must be taken into account in fitting an ARMA model to the detrended data.

    The Classical Econometric Model

    Get PDF
    A compendium is presented of the various approaches that may be taken in deriving the estimators of the simultaneous-equations econometric model according to the principle of maximum likelihood. The structural equations of the model have the character both of a regression equation and of an errors-in-variables equation. This partly accounts for way in which the various approaches that have been followed appear to differ widely. In the process of achieving a synthesis of the methods of estimation, some elements that have been missing from the theory are supplied.

    Realisations of Finite-Sample Frequency-Selective Filters

    Get PDF
    A filtered data sequence can be obtained by multiplying the Fourier ordinates of the data by the ordinates of the frequency response of the filter and by applying the inverse Fourier transform to carry the product back to the time domain. Using this technique, it is possible, within the constraints of a finite sample, to design an ideal frequency-selective filter that will preserve all elements within a specified range of frequencies and that will remove all elements outside it. Approximations to ideal filters that are implemented in the time domain are commonly based on truncated versions of the infinite sequences of coefficients derived from the Fourier transforms of rectangular frequency response functions. An alternative to truncating an infinite sequence of coefficients is to wrap it around a circle of a circumference equal in length to the data sequence and to add the overlying coefficients. The coefficients of the wrapped filter can also be obtained by applying a discrete Fourier transform to a set of ordinates sampled from the frequency response function. Applying the coefficients to the data via circular convolution produces results that are identical to those obtained by a multiplication in the frequency domain, which constitutes a more efficient approach.Signal extraction; Linear filtering; Frequency-domain analysis

    Statistical Fourier Analysis: Clarifications and Interpretations

    Get PDF
    This paper expounds some of the results of Fourier theory that are essential to the statistical analysis of time series. It employs the algebra of circulant matrices to expose the structure of the discrete Fourier transform and to elucidate the filtering operations that may be applied to finite data sequences. An ideal filter with a gain of unity throughout the pass band and a gain of zero throughout the stop band is commonly regarded as incapable of being realised in finite samples. It is shown here that, to the contrary, such a filter can be realised both in the time domain and in the frequency domain. The algebra of circulant matrices is also helpful in revealing the nature of statistical processes that are band limited in the frequency domain. In order to apply the conventional techniques of autoregressive moving-average modelling, the data generated by such processes must be subjected to antialiasing filtering and sub sampling. These techniques are also described. It is argued that band-limited processes are more prevalent in statistical and econometric time series than is commonly recognised.

    The Frequency Analysis of the Business Cycle

    Get PDF
    An account is given of some techniques of linear filtering that can be used for extracting the business cycle from economic data sequences of limited duration. It is argued that there can be no definitive definition of the business cycle. Both the definition of the business cycle and the methods that are used to extract it must be adapted to the purposes of the analysis; and different definitions may be appropriate to different eras.Linear filtering; Frequency-domain analysis; Flexible trends

    On the criterion function for arma estimation

    Get PDF

    Identification of linear stochastic models with covariance restrictions

    Get PDF
    • ā€¦
    corecore