17,593 research outputs found

    On the binary codes with parameters of triply-shortened 1-perfect codes

    Full text link
    We study properties of binary codes with parameters close to the parameters of 1-perfect codes. An arbitrary binary (n=2m3,2nm1,4)(n=2^m-3, 2^{n-m-1}, 4) code CC, i.e., a code with parameters of a triply-shortened extended Hamming code, is a cell of an equitable partition of the nn-cube into six cells. An arbitrary binary (n=2m4,2nm,3)(n=2^m-4, 2^{n-m}, 3) code DD, i.e., a code with parameters of a triply-shortened Hamming code, is a cell of an equitable family (but not a partition) from six cells. As a corollary, the codes CC and DD are completely semiregular; i.e., the weight distribution of such a code depends only on the minimal and maximal codeword weights and the code parameters. Moreover, if DD is self-complementary, then it is completely regular. As an intermediate result, we prove, in terms of distance distributions, a general criterion for a partition of the vertices of a graph (from rather general class of graphs, including the distance-regular graphs) to be equitable. Keywords: 1-perfect code; triply-shortened 1-perfect code; equitable partition; perfect coloring; weight distribution; distance distributionComment: 12 page

    Characteristics of Cosmic Time

    Get PDF
    The nature of cosmic time is illuminated using Hamilton-Jacobi theory for general relativity. For problems of interest to cosmology, one may solve for the phase of the wavefunctional by using a line integral in superspace. Each contour of integration corresponds to a particular choice of time hypersurface, and each yields the same answer. In this way, one can construct a covariant formalism where all time hypersurfaces are treated on an equal footing. Using the method of characteristics, explicit solutions for an inflationary epoch with several scalar fields are given. The theoretical predictions of double inflation are compared with recent galaxy data and large angle microwave background anisotropies.Comment: 20 pages, RevTex using Latex 2.09, Submitted to Physical Review D Two figures included in fil

    Reliability prediction in model driven development

    Get PDF
    Evaluating the implications of an architecture design early in the software development lifecycle is important in order to reduce costs of development. Reliability is an important concern with regard to the correct delivery of software system service. Recently, the UML Profile for Modeling Quality of Service has defined a set of UML extensions to represent dependability concerns (including reliability) and other non-functional requirements in early stages of the software development lifecycle. Our research has shown that these extensions are not comprehensive enough to support reliability analysis for model-driven software engineering, because the description of reliability characteristics in this profile lacks support for certain dynamic aspects that are essential in modeling reliability. In this work, we define a profile for reliability analysis by extending the UML 2.0 specification to support reliability prediction based on scenario specifications. A UML model specified using the profile is translated to a labelled transition system (LTS), which is used for automated reliability prediction and identification of implied scenarios; the results of this analysis are then fed back to the UML model. The result is a comprehensive framework for addressing software reliability modeling, including analysis and evolution of reliability predictions. We exemplify our approach using the Boiler System used in previous work and demonstrate how reliability analysis results can be integrated into UML models

    Solving the Hamilton-Jacobi Equation for General Relativity

    Full text link
    We demonstrate a systematic method for solving the Hamilton-Jacobi equation for general relativity with the inclusion of matter fields. The generating functional is expanded in a series of spatial gradients. Each term is manifestly invariant under reparameterizations of the spatial coordinates (``gauge-invariant''). At each order we solve the Hamiltonian constraint using a conformal transformation of the 3-metric as well as a line integral in superspace. This gives a recursion relation for the generating functional which then may be solved to arbitrary order simply by functionally differentiating previous orders. At fourth order in spatial gradients, we demonstrate solutions for irrotational dust as well as for a scalar field. We explicitly evolve the 3-metric to the same order. This method can be used to derive the Zel'dovich approximation for general relativity.Comment: 13 pages, RevTeX, DAMTP-R93/2

    Dark energy, antimatter gravity and geometry of the Universe

    Full text link
    This article is based on two hypotheses. The first one is the existence of the gravitational repulsion between particles and antiparticles. Consequently, virtual particle-antiparticle pairs in the quantum vacuum may be considered as gravitational dipoles. The second hypothesis is that the Universe has geometry of a four-dimensional hyper-spherical shell with thickness equal to the Compton wavelength of a pion, which is a simple generalization of the usual geometry of a 3-hypersphere. It is striking that these two hypotheses lead to a simple relation for the gravitational mass density of the vacuum, which is in very good agreement with the observed dark energy density

    The Surface Region of Superfluid 4^4He as a Dilute Bose-Condensed Gas

    Full text link
    In the low-density surface region of superfluid 4^4He, the atoms are far apart and collisions can be ignored. The only effect of the interactions is from the long-range attractive Hartree potential produced by the distant high-density bulk liquid. As a result, at T=0T=0, all the atoms occupy the same single-particle state in the low-density tail. Striking numerical evidence for this 100\% surface BEC was given by Pandharipande and coworkers in 1988. We derive a generalized Gross-Pitaevskii equation for the inhomogeneous condensate wave function Φ(z)\Phi(z) in the low-density region valid at all temperatures. The overall amplitude of Φ(z)\Phi(z) is fixed by the bulk liquid, which ensures that it vanishes everywhere at the bulk transition temperature.Comment: 6 pages, paper submitted to Low Temperature Conference (LT21), Prague, Aug., 1996; to appear in proceeding

    Feshbach resonances in a quasi-2D atomic gas

    Full text link
    Strongly confining an ultracold atomic gas in one direction to create a quasi-2D system alters the scattering properties of this gas. We investigate the effects of confinement on Feshbach scattering resonances and show that strong confinement results in a shift in the position of the Feshbach resonance as a function of the magnetic field. This shift, as well as the change of the width of the resonance, are computed. We find that the resonance is strongly damped in the thermal gas, but in the condensate the resonance remains sharp due to many-body effects. We introduce a 2D model system, suited for the study of resonant superfluidity, and having the same scattering properties as the tightly confined real system near a Feshbach resonance. Exact relations are derived between measurable quantities and the model parameters.Comment: 8 pages, 2 figure
    corecore