26 research outputs found

    On the averaging principle for one-frequency systems. Seminorm estimates for the error

    Full text link
    We extend some previous results of our work [1] on the error of the averaging method, in the one-frequency case. The new error estimates apply to any separating family of seminorms on the space of the actions; they generalize our previous estimates in terms of the Euclidean norm. For example, one can use the new approach to get separate error estimates for each action coordinate. An application to rigid body under damping is presented. In a companion paper [2], the same method will be applied to the motion of a satellite around an oblate planet.Comment: LaTeX, 23 pages, 4 figures. The final version published in Nonlinear Dynamic

    Statistics and geometry of cosmic voids

    Full text link
    We introduce new statistical methods for the study of cosmic voids, focusing on the statistics of largest size voids. We distinguish three different types of distributions of voids, namely, Poisson-like, lognormal-like and Pareto-like distributions. The last two distributions are connected with two types of fractal geometry of the matter distribution. Scaling voids with Pareto distribution appear in fractal distributions with box-counting dimension smaller than three (its maximum value), whereas the lognormal void distribution corresponds to multifractals with box-counting dimension equal to three. Moreover, voids of the former type persist in the continuum limit, namely, as the number density of observable objects grows, giving rise to lacunar fractals, whereas voids of the latter type disappear in the continuum limit, giving rise to non-lacunar (multi)fractals. We propose both lacunar and non-lacunar multifractal models of the cosmic web structure of the Universe. A non-lacunar multifractal model is supported by current galaxy surveys as well as cosmological NN-body simulations. This model suggests, in particular, that small dark matter halos and, arguably, faint galaxies are present in cosmic voids.Comment: 39 pages, 8 EPS figures, supersedes arXiv:0802.038
    corecore