79 research outputs found

    Many-Electron Systems with Constrained Current

    Full text link
    A formulation for transport in an inhomogeneous, interacting electron gas is described. Electronic current is induced by a constraint condition imposed as a vector Lagrange multiplier. Constrained minimization of the total energy functional on the manifold of an arbitrary constant current leads to a many-electron Schroedinger equation with a complex, momentum-dependent potential. Constant current Hartree-Fock and Kohn-Sham approximations are formulated within the method and application to transport for quantum wires is developed. No appeal is made to near equilibrium conditions or other approximations allowing development of a general ab initio electronic transport formulation

    Pan-conserved segment tags identify ultra-conserved sequences across assemblies in the human pangenome

    Get PDF
    The human pangenome, a new reference sequence, addresses many limitations of the current GRCh38 reference. The first release is based on 94 high-quality haploid assemblies from individuals with diverse backgrounds. We employed a k-mer indexing strategy for comparative analysis across multiple assemblies, including the pangenome reference, GRCh38, and CHM13, a telomere-to-telomere reference assembly. Our k-mer indexing approach enabled us to identify a valuable collection of universally conserved sequences across all assemblies, referred to as “pan-conserved segment tags” (PSTs). By examining intervals between these segments, we discerned highly conserved genomic segments and those with structurally related polymorphisms. We found 60,764 polymorphic intervals with unique geo-ethnic features in the pangenome reference. In this study, we utilized ultra-conserved sequences (PSTs) to forge a link between human pangenome assemblies and reference genomes. This methodology enables the examination of any sequence of interest within the pangenome, using the reference genome as a comparative framework

    Collaborative International Research in Clinical and Longitudinal Experience Study in NMOSD

    Get PDF
    OBJECTIVE: To develop a resource of systematically collected, longitudinal clinical data and biospecimens for assisting in the investigation into neuromyelitis optica spectrum disorder (NMOSD) epidemiology, pathogenesis, and treatment. METHODS: To illustrate its research-enabling purpose, epidemiologic patterns and disease phenotypes were assessed among enrolled subjects, including age at disease onset, annualized relapse rate (ARR), and time between the first and second attacks. RESULTS: As of December 2017, the Collaborative International Research in Clinical and Longitudinal Experience Study (CIRCLES) had enrolled more than 1,000 participants, of whom 77.5% of the NMOSD cases and 71.7% of the controls continue in active follow-up. Consanguineous relatives of patients with NMOSD represented 43.6% of the control cohort. Of the 599 active cases with complete data, 84% were female, and 76% were anti-AQP4 seropositive. The majority were white/Caucasian (52.6%), whereas blacks/African Americans accounted for 23.5%, Hispanics/Latinos 12.4%, and Asians accounted for 9.0%. The median age at disease onset was 38.4 years, with a median ARR of 0.5. Seropositive cases were older at disease onset, more likely to be black/African American or Hispanic/Latino, and more likely to be female. CONCLUSION: Collectively, the CIRCLES experience to date demonstrates this study to be a useful and readily accessible resource to facilitate accelerating solutions for patients with NMOSD

    Crime, media and the will-to-representation: Reconsidering relationships in the new media age

    Get PDF
    This paper considers the ways in which the rise of new media might challenge commonplace criminological assumptions about the crime–media interface. Established debates around crime and media have long been based upon a fairly clear demarcation between production and consumption, between object and audience – the media generates and transmits representations of crime, and audiences engage with them. However, one of the most noticeable changes occurring in the wake of the development of new media is the proliferation of self-organised production by ‘ordinary people’ – everything ranging from self-authored web pages and ‘blogs’, to self-produced video created using hand-held camcorders, camera-phones and ‘webcams’. Today we see the spectacle of people them, send them and upload them to the Internet. This kind of ‘will to representation’ may be seen in itself as a new kind of causal inducement to law- and rule-breaking behaviour. It may be that, in the new media age, the terms of criminological questioning need to be sometimes reversed: instead of asking whether ‘media’ instigates crime or fear of crime, we must ask how the very possibility of bound up with the genesis of criminal behaviour.performing acts of crime and deviance in order to recordmediating oneself to an audience through self-representation might be bound up with the genesis of criminal behaviour

    Developing atom probe tomography of phyllosilicates in preparation for extra-terrestrial sample return

    Get PDF
    Hydrous phyllosilicate minerals, including the serpentine subgroup, are likely to be major constituents of material that will be bought back to Earth by missions to Mars and to primitive asteroids Ryugu and Bennu. Small quantities (< 60 g) of micrometre sized, internally heterogeneous material will be available for study, requiring minimally destructive techniques. Many conventional methods are unsuitable for phyllosilicates as they are typically finely crystalline and electron beam sensitive resulting in amorphisation and dehydration. New tools will be required for nanoscale characterisation of these precious extra‐terrestrial samples. Here we test the effectiveness of atom probe tomography (APT) for this purpose. Using lizardite from the Ronda peridotite, Spain, as a terrestrial analogue, we outline an effective analytical protocol to extract nanoscale chemical and structural measurements of phyllosilicates. The potential of APT is demonstrated by the unexpected finding that the Ronda lizardite contains SiO‐rich nanophases, consistent with opaline silica that formed as a by‐product of the serpentinisation of olivine. Our new APT approach unlocks previously unobservable nanominerals and nanostructures within phyllosilicates owing to resolution limitations of more established imaging techniques. APT will provide unique insights into the processes and products of water/rock interaction on Earth, Mars and primitive asteroids

    Selective Exposure to Berita Harian Online and Utusan Malaysia Online: The Roles of Surveillance Motivation, Website Usability and Website Attractiveness

    Get PDF
    News media allows audiences to be selective in determining both their news sources and type of news stories they read. This study examined factors influencing selective exposure to the online editions of two mainstream Malaysian newspapers, Berita Harian and Utusan Malaysia. Using selective exposure theory as the theoretical lens, this study compared both newspapers in terms of their audiences’ level of surveillance motivation, and how audiences rate the newspapers’ websites with respect to usability and attractiveness. This study used a within-subject experimental research design that exposed 51 subjects to both Berita Harian and Utusan Malaysia online newspapers. The results of the experiment indicate that Berita Harian and Utusan Malaysia online were significantly different in terms of website usability; however, no significant differences were found in terms of surveillance motivation or website attractiveness between the two newspapers. Further analysis indicate that the only significant predictor of selective exposure was website usability. This study highlights the importance of website usability for online newspapers wanting to harness audience selectivity

    Differential Geometry Based Multiscale Models

    Full text link

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore