22 research outputs found

    Collapse of the vortex-lattice inductance and shear modulus at the melting transition in untwinned YBa2Cu3O7\rm YBa_2Cu_3O_7

    Full text link
    The complex resistivity ρ^(ω)\hat{\rho}(\omega) of the vortex lattice in an untwinned crystal of 93-K YBa2Cu3O7\rm YBa_2Cu_3O_7 has been measured at frequencies ω/2π\omega/2\pi from 100 kHz to 20 MHz in a 2-Tesla field Hc\bf H\parallel c, using a 4-probe RF transmission technique that enables continuous measurements versus ω\omega and temperature TT. As TT is increased, the inductance Ls(ω)=Imρ^(ω)/ω{\cal L}_s(\omega) ={\rm Im} \hat{\rho}(\omega)/ \omega increases steeply to a cusp at the melting temperature TmT_m, and then undergoes a steep collapse consistent with vanishing of the shear modulus c66c_{66}. We discuss in detail the separation of the vortex-lattice inductance from the `volume' inductance, and other skin-depth effects. To analyze the spectra, we consider a weakly disordered lattice with a low pin density. Close fits are obtained to ρ1(ω)\rho_1(\omega) over 2 decades in ω\omega. Values of the pinning parameter κ\kappa and shear modulus c66c_{66} obtained show that c66c_{66} collapses by over 4 decades at TmT_m, whereas κ\kappa remains finite.Comment: 11 pages, 8 figures, Phys. Rev. B, in pres

    Fluctuations and Intrinsic Pinning in Layered Superconductors

    Full text link
    A flux liquid can condense into a smectic crystal in a pure layered superconductors with the magnetic field oriented nearly parallel to the layers. If the smectic order is commensurate with the layering, this crystal is {\sl stable} to point disorder. By tilting and adjusting the magnitude of the applied field, both incommensurate and tilted smectic and crystalline phases are found. We discuss transport near the second order smectic freezing transition, and show that permeation modes lead to a small non--zero resistivity and large but finite tilt modulus in the smectic crystal.Comment: 4 pages + 1 style file + 1 figure (as uufile) appended, REVTEX 3.

    Vortex phase transformations probed by the local ac response of Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} single crystals with various doping

    Full text link
    The linear ac response of the vortex system is measured locally in Bi-2212 single crystals at various doping, using a miniature two-coil mutual-inductance technique. It was found that a step-like change in the local ac response takes place exactly at the first-order transition (FOT) temperature T_{FOT}(H) determined by a global dc magnetization measurement. The T_{FOT}(H) line in the H-T phase diagram becomes steeper with increasing doping. In the higher-field region where the FOT is not observed, the local ac response still shows a broadened but distinct feature, which can be interpreted to mark the growth of a short-range order in the vortex system.Comment: 4 pages, including 5 eps figure

    Domain regime in two-dimensional disordered vortex matter

    Full text link
    A detailed numerical study of the real space configuration of vortices in disordered superconductors using 2D London-Langevin model is presented. The magnetic field BB is varied between 0 and Bc2B_{c2} for various pinning strengths Δ\Delta. For weak pinning, an inhomogeneous disordered vortex matter is observed, in which the topologically ordered vortex lattice survives in large domains. The majority of the dislocations in this state are confined to the grain boundaries/domain walls. Such quasi-ordered configurations are observed in the intermediate fields, and we refer it as the domain regime (DR). The DR is distinct from the low-field and the high-fields amorphous regimes which are characterized by a homogeneous distribution of defects over the entire system. Analysis of the real space configuration suggests domain wall roughening as a possible mechanism for the crossover from the DR to the high-field amorphous regime. The DR also shows a sharp crossover to the high temperature vortex liquid phase. The domain size distribution and the roughness exponent of the lattice in the DR are also calculated. The results are compared with some of the recent Bitter decoration experiments.Comment: 9 pages, 9 figure

    Muon-Spin Rotation Spectra in the Mixed Phase of High-T_c Superconductors : Thermal Fluctuations and Disorder Effects

    Full text link
    We study muon-spin rotation (muSR) spectra in the mixed phase of highly anisotropic layered superconductors, specifically Bi_2+xSr_2-xCaCu_2O_8+delta (BSCCO), by modeling the fluid and solid phases of pancake vortices using liquid-state and density functional methods. The role of thermal fluctuations in causing motional narrowing of muSR lineshapes is quantified in terms of a first-principles theory of the flux-lattice melting transition. The effects of random point pinning are investigated using a replica treatment of liquid state correlations and a replicated density functional theory. Our results indicate that motional narrowing in the pure system, although substantial, cannot account for the remarkably small linewidths obtained experimentally at relatively high fields and low temperatures. We find that satisfactory agreement with the muSR data for BSCCO in this regime can be obtained through the ansatz that this ``phase'' is characterized by frozen short-range positional correlations reflecting the structure of the liquid just above the melting transition. This proposal is consistent with recent suggestions of a ``pinned liquid'' or ``glassy'' state of pancake vortices in the presence of pinning disorder. Our results for the high-temperature liquid phase indicate that measurable linewidths may be obtained in this phase as a consequence of density inhomogeneities induced by the pinning disorder. The results presented here comprise a unified, first-principles theoretical treatment of muSR spectra in highly anisotropic layered superconductors in terms of a controlled set of approximations.Comment: 50 pages Latex file, including 10 postscript figure

    Flux noise in high-temperature superconductors

    Full text link
    Spontaneously created vortex-antivortex pairs are the predominant source of flux noise in high-temperature superconductors. In principle, flux noise measurements allow to check theoretical predictions for both the distribution of vortex-pair sizes and for the vortex diffusivity. In this paper the flux-noise power spectrum is calculated for the highly anisotropic high-temperature superconductor Bi-2212, both for bulk crystals and for ultra-thin films. The spectrum is basically given by the Fourier transform of the temporal magnetic-field correlation function. We start from a Berezinskii-Kosterlitz-Thouless type theory and incorporate vortex diffusion, intra-pair vortex interaction, and annihilation of pairs by means of a Fokker-Planck equation to determine the noise spectrum below and above the superconducting transition temperature. We find white noise at low frequencies omega and a spectrum proportional to 1/omega^(3/2) at high frequencies. The cross-over frequency between these regimes strongly depends on temperature. The results are compared with earlier results of computer simulations.Comment: 9 pages, 4 PostScript figures, to be published in Phys. Rev.

    Temperature and Frequency Dependence of Complex Conductance of Ultrathin YBa2Cu3O7-x Films: A Study of Vortex-Antivortex Pair Unbinding

    Full text link
    We have studied the temperature dependencies of the complex sheet conductance of 1-3 unit cell (UC) thick YBa2Cu3O7-x films sandwiched between semiconducting Pr0.6Y0.4Ba2Cu3O7-x layers at high frequencies. Experiments have been carried out in a frequency range between: 2 - 30 MHz with one-spiral coil technique, 100 MHz - 1 GHz frequency range with a new technique using the spiral coil cavity and at 30 GHz by aid of a resonant cavity technique. The real and imaginary parts of the mutual-inductance between a coil and a film were measured and converted to complex conductivity by aid of the inversion procedure. We have found a quadratic temperature dependence of the kinetic inductance, L_k^-1(T), at low temperatures independent of frequency, with a break in slope at T^dc_BKT, the maximum of real part of conductance and a large shift of the break temperature and the maximum position to higher temperatures with increasing frequency. We obtain from these data the universal ratio T^dc_BKT/L_k^-1(T^dc_BKT) = 25, 25, and 17 nHK for 1-, 2- and 3UC films, respectively in close agreement with theoretical prediction of 12 nHK for vortex-antivortex unbinding transition. The activated temperature dependence of the vortex diffusion constant was observed and discussed in the framework of vortex-antivortex pair pinning. PACS numbers: 74.80.Dm, 74.25.Nf, 74.72.Bk, 74.76.BzComment: PDF file, 10 pages, 6 figures, to be published in J. Low Temp. Phys.; Proc. of NATO ARW: VORTEX 200

    NMR and NQR Fluctuation Effects in Layered Superconductors

    Full text link
    We study the effect of thermal fluctuations of the s-wave order parameter of a quasi two dimensional superconductor on the nuclear spin relaxation rate near the transition temperature Tc. We consider both the effects of the amplitude fluctuations and the Berezinskii-Kosterlitz-Thouless (BKT) phase fluctuations in weakly coupled layered superconductors. In the treatment of the amplitude fluctuations we employ the Gaussian approximation and evaluate the longitudinal relaxation rate 1/T1 for a clean s-wave superconductor, with and without pair breaking effects, using the static pair fluctuation propagator D. The increase in 1/T1 due to pair breaking in D is overcompensated by the decrease arising from the single particle Green's functions. The result is a strong effect on 1/T1 for even a small amount of pair breaking. The phase fluctuations are described in terms of dynamical BKT excitations in the form of pancake vortex-antivortex (VA) pairs. We calculate the effect of the magnetic field fluctuations caused by the translational motion of VA excitations on 1/T1 and on the transverse relaxation rate 1/T2 on both sides of the BKT transitation temperature T(BKT)<Tc. The results for the NQR relaxation rates depend strongly on the diffusion constant that governs the motion of free and bound vortices as well as the annihilation of VA pairs. We discuss the relaxation rates for real multilayer systems where the diffusion constant can be small and thus increase the lifetime of a VA pair, leading to an enhancement of the rates. We also discuss in some detail the experimental feasibility of observing the effects of amplitude fluctuations in layered s-wave superconductors such as the dichalcogenides and the effects of phase fluctuations in s- or d-wave superconductors such as the layered cuprates.Comment: 38 pages, 12 figure
    corecore