10 research outputs found

    Tick-Borne Encephalitis Virus Prevalence in Sheep, Wild Boar and Ticks in Belgium.

    No full text
    Tick-borne encephalitis virus (TBEV) is the most important tick-borne zoonotic virus in Europe. In Belgium, antibodies to TBEV have already been detected in wildlife and domestic animals, but up-to-date prevalence data for TBEV are lacking, and no studies have assessed its seroprevalence in sheep. Serum samples of 480 sheep from all over Belgium and 831 wild boar hunted in Flanders (northern Belgium) were therefore screened for TBEV antibodies by ELISA and plaque reduction neutralization test (PRNT), respectively. The specificity of positive samples was assessed by PRNTs for TBEV and the Louping Ill, West Nile, and Usutu viruses. TBEV seroprevalence was 0.42% (2/480, CI 95%: 0.11-1.51) in sheep and 9.27% (7&#8542;31, CI 95%: 7.48-11.43) in wild boar. TBEV seroprevalence in wild boar from the province of Flemish Brabant was significantly higher (22.38%, 1&#8538;7) compared to Limburg (7.74%, 34/439) and Antwerp (8.61%, 28/325). Oud-Heverlee was the hunting area harboring the highest TBEV seroprevalence (33.33%, 1&#8531;3). In an attempt to obtain a Belgian TBEV isolate, 1983 ticks collected in areas showing the highest TBEV seroprevalence in wild boars were tested by real-time qPCR. No TBEV-RNA-positive tick was detected. The results of this study suggest an increase in TBEV prevalence over the last decade and highlight the need for One-Health surveillance in&nbsp;Belgium.</p

    Lumpy Skin Disease Virus Genome Sequence Analysis: Putative Spatio-Temporal Epidemiology, Single Gene versus Whole Genome Phylogeny and Genomic Evolution.

    No full text
    is a poxvirus from the genus that mainly affects bovines and it causes severe economic losses to livestock holders. The is currently dispersing in Asia, but little is known about detailed phylogenetic relations between the strains and genome evolution. We reconstructed a whole-genome-sequence (WGS)-based phylogeny and compared it with single-gene-based phylogenies. To study population and spatiotemporal patterns in greater detail, we reconstructed networks. We determined that there are strains from multiple clades within the previously defined cluster 1.2 that correspond with recorded outbreaks across Eurasia and South Asia (Indian subcontinent), while strains from cluster 2.5 spread in Southeast Asia. We concluded that using only a single gene (cheap, fast and easy to routinely use) for sequencing lacks phylogenetic and spatiotemporal resolution and we recommend to create at least one WGS whenever possible. We also found that there are three gene regions, highly variable, across the genome of LSDV. These gene regions are located in the 5’ and 3’ flanking regions of the LSDV genome and they encode genes that are involved in immune evasion strategies of the virus. These may provide a starting point to further investigate the evolution of the&nbsp;virus.</p

    Belgian Mosquitoes Are Competent for Japanese Encephalitis Virus and Readily Feed on Pigs, Suggesting a High Vectorial Capacity.

    No full text
    , a day-active mosquito known to feed aggressively on humans, was reported as a nuisance species near an abandoned pigsty in Belgium. Since Japanese encephalitis virus (JEV) is an emerging zoonotic flavivirus which uses pigs as amplification hosts, we investigated (1) whether would feed on pigs and (2) its vector competence for JEV, to investigate whether this species could be a potential vector. Three- to seven-day-old F0-generation adult mosquitoes, emerged from field-collected larvae, were fed on a JEV genotype 3 Nakayama strain spiked blood meal. Blood-fed mosquitoes were subsequently incubated for 14 days at two temperature conditions: a constant 25 °C and a 25/15 °C day/night temperature gradient. Our results show that is a competent vector for JEV at the 25 °C condition and this with an infection rate of 34.1%, a dissemination rate of 67.7% and a transmission rate of 14.3%. The vector competence showed to be influenced by temperature, with a significantly lower dissemination rate (16.7%) and no transmission when implementing the temperature gradient. Moreover, we demonstrated that readily feeds on pigs when the opportunity occurs. Therefore, our results suggest that Belgian mosquitoes may play an important role in the transmission of JEV upon an introduction into our region if temperatures increase with climate&nbsp;change.</p

    Unchanged Schmallenberg virus seroprevalence in the Belgian sheep population after the vector season of 2014 and 2015 despite evidence of virus circulation.

    No full text
    &lt;p&gt;Schmallenberg virus (SBV) emerged in North-Western Europe in 2011 and induces congenital defects in ruminants. Many epidemiological studies were undertaken to study the spread of the virus during the first two years after its emergence, but little data is available on the current antibody protection rate against SBV. A cross-sectional seroprevalence study was therefore carried out in the Belgian sheep population and showed that the total seroprevalence against SBV was 26% (CI: 21-32) at the end of the vector season of 2015, being significantly lower than the seroprevalence of 84% detected after the outbreak in 2011. Nevertheless, 63% (CI: 51-73) of the Belgian sheep flocks still had a certain level of protection against SBV. Despite the fact that PCR detection of SBV in aborted calves in April 2016 evidenced that SBV had circulated in 2015, no change in seroprevalence between 2014 and 2015 was found in the Belgian sheep population.&lt;/p&gt;</p

    Duration of Immunity Induced after Vaccination of Cattle with a Live Attenuated or Inactivated Lumpy Skin Disease Virus Vaccine

    No full text
    Vaccines have proven themselves as an efficient way to control and eradicate lumpy skin disease (LSD). In addition to the safety and efficacy aspects, it is important to know the duration for which the vaccines confer protective immunity, as this impacts the design of an efficient control and eradication program. We evaluated the duration of immunity induced by a live attenuated vaccine (LSDV LAV) and an inactivated vaccine (LSDV Inac), both based on LSDV. Cattle were vaccinated and challenged after 6, 12 and 18 months for LSDV LAV or after 6 and 12 months for the LSDV Inac. The LSDV LAV elicited a strong immune response and protection for up to 18 months, as no clinical signs or viremia could be observed after a viral LSDV challenge in any of the vaccinated animals. A good immune response and protection were similarly seen for the LSDV Inac after 6 months. However, two animals developed clinical signs and viremia when challenged after 12 months. In conclusion, our data support the annual booster vaccination when using the live attenuated vaccine, as recommended by the manufacturer, which could potentially even be prolonged. In contrast, a bi-annual vaccination seems necessary when using the inactivated&nbsp;vaccine.</p

    [Foot and mouth disease virus: transmission, pathogenesis, diagnosis and surveillance].

    No full text
    Foot-and-mouth disease (FMD) is one of the most contagious viral animal diseases. It is an old disease which still poses a permanent threat of re-emergence for free zones. Foot-and-Mouth Disease Virus (FMDV), a Picornavirus belonging to genus Aphthovirus affects domestic and wild artiodactyls. FMD has a considerable socio-economic impact on agricultural production and trade in endemic regions, but also when incursions occur into FMD free areas, as in Europe in 2001. FMDV is historically one of the most studied viruses. Due to its high genetic and antigenic variability, the absence of cross-immunity between its seven serotypes, its ability to survive in the environment, its high contagiousness, its wide range of hosts and its particular biology, FMDV remains of major interest in animal health and the subject of many research projects. This review presents different aspects of FMDV infection, ranging from basic biology to diagnosis, surveillance and&nbsp;control.</p
    corecore