149 research outputs found

    Quantum Phase Transitions and Conserved Charges

    Full text link
    The constraints on the scaling properties of conserved charge densities in the vicinity of a zero temperature (TT), second-order quantum phase transition are studied. We introduce a generalized Wilson ratio, characterizing the non-linear response to an external field, HH, coupling to any conserved charge, and argue that it is a completely universal function of H/TH/T: this is illustrated by computations on model systems. We also note implications for transitions where the order parameter is a conserved charge (as in a T=0T=0 ferromagnet-paramagnet transition).Comment: 19 pages, REVTEX 3.0, 8 uuencoded Postscript figues appended, YCTP-xxx

    Theory of finite temperature crossovers near quantum critical points close to, or above, their upper-critical dimension

    Full text link
    A systematic method for the computation of finite temperature (TT) crossover functions near quantum critical points close to, or above, their upper-critical dimension is devised. We describe the physics of the various regions in the TT and critical tuning parameter (tt) plane. The quantum critical point is at T=0T=0, t=0t=0, and in many cases there is a line of finite temperature transitions at T=Tc(t)T = T_c (t), t<0t < 0 with Tc(0)=0T_c (0) = 0. For the relativistic, nn-component ϕ4\phi^4 continuum quantum field theory (which describes lattice quantum rotor (n2n \geq 2) and transverse field Ising (n=1n=1) models) the upper critical dimension is d=3d=3, and for d<3d<3, ϵ=3d\epsilon=3-d is the control parameter over the entire phase diagram. In the region TTc(t)Tc(t)|T - T_c (t)| \ll T_c (t), we obtain an ϵ\epsilon expansion for coupling constants which then are input as arguments of known {\em classical, tricritical,} crossover functions. In the high TT region of the continuum theory, an expansion in integer powers of ϵ\sqrt{\epsilon}, modulo powers of lnϵ\ln \epsilon, holds for all thermodynamic observables, static correlators, and dynamic properties at all Matsubara frequencies; for the imaginary part of correlators at real frequencies (ω\omega), the perturbative ϵ\sqrt{\epsilon} expansion describes quantum relaxation at ωkBT\hbar \omega \sim k_B T or larger, but fails for ωϵkBT\hbar \omega \sim \sqrt{\epsilon} k_B T or smaller. An important principle, underlying the whole calculation, is the analyticity of all observables as functions of tt at t=0t=0, for T>0T>0; indeed, analytic continuation in tt is used to obtain results in a portion of the phase diagram. Our method also applies to a large class of other quantum critical points and their associated continuum quantum field theories.Comment: 36 pages, 4 eps figure

    Critical properties of the Fermi-Bose Kondo and pseudogap Kondo models: Renormalized perturbation theory

    Full text link
    Magnetic impurities coupled to both fermionic and bosonic baths or to a fermionic bath with pseudogap density of states, described by the Fermi-Bose Kondo and pseudogap Kondo models, display non-trivial intermediate coupling fixed points associated with critical local-moment fluctuations and local non-Fermi liquid behavior. Based on renormalization group together with a renormalized perturbation expansion around the free-impurity limit, we calculate various impurity properties in the vicinity of those intermediate-coupling fixed points. In particular, we compute the conduction electron T matrix, the impurity susceptibility, and the residual impurity entropy, and relate our findings to certain scenarios of local quantum criticality in strongly correlated lattice models.Comment: 16 pages, 5 figs; (v2) large-N results for entropy of Bose-Kondo model added; (v3) final version as publishe

    Non-Fermi liquid behavior from two-dimensional antiferromagnetic fluctuations: a renormalization-group and large-N analysis

    Full text link
    We analyze the Hertz-Moriya-Millis theory of an antiferromagnetic quantum critical point, in the marginal case of two dimensions (d=2,z=2). Up to next-to-leading order in the number of components (N) of the field, we find that logarithmic corrections do not lead to an enhancement of the Landau damping. This is in agreement with a renormalization-group analysis, for arbitrary N. Hence, the logarithmic effects are unable to account for the behavior reportedly observed in inelastic neutron scattering experiments on CeCu_{6-x}Au_x. We also examine the extended dynamical mean-field treatment (local approximation) of this theory, and find that only subdominant corrections to the Landau damping are obtained within this approximation, in contrast to recent claims.Comment: 15 pages, 8 figure

    Application of the group-theoretical method to physical problems

    Full text link
    The concept of the theory of continuous groups of transformations has attracted the attention of applied mathematicians and engineers to solve many physical problems in the engineering sciences. Three applications are presented in this paper. The first one is the problem of time-dependent vertical temperature distribution in a stagnant lake. Two cases have been considered for the forms of the water parameters, namely water density and thermal conductivity. The second application is the unsteady free-convective boundary-layer flow on a non-isothermal vertical flat plate. The third application is the study of the dispersion of gaseous pollutants in the presence of a temperature inversion. The results are found in closed form and the effect of parameters are discussed

    The nature of slow dynamics in a minimal model of frustration-limited domains

    Full text link
    We present simulation results for the dynamics of a schematic model based on the frustration-limited domain picture of glass-forming liquids. These results are compared with approximate theoretical predictions analogous to those commonly used for supercooled liquid dynamics. Although model relaxation times increase by several orders of magnitude in a non-Arrhenius manner as a microphase separation transition is approached, the slow relaxation is in many ways dissimilar to that of a liquid. In particular, structural relaxation is nearly exponential in time at each wave vector, indicating that the mode coupling effects dominating liquid relaxation are comparatively weak within this model. Relaxation properties of the model are instead well reproduced by the simplest dynamical extension of a static Hartree approximation. This approach is qualitatively accurate even for temperatures at which the mode coupling approximation predicts loss of ergodicity. These results suggest that the thermodynamically disordered phase of such a minimal model poorly caricatures the slow dynamics of a liquid near its glass transition

    Crossover and scaling in a nearly antiferromagnetic Fermi liquid in two dimensions

    Full text link
    We consider two-dimensional Fermi liquids in the vicinity of a quantum transition to a phase with commensurate, antiferromagnetic long-range order. Depending upon the Fermi surface topology, mean-field spin-density-wave theory predicts two different types of such transitions, with mean-field dynamic critical exponents z=1z=1 (when the Fermi surface does not cross the magnetic zone boundary, type AA) and z=2z=2 (when the Fermi surface crosses the magnetic zone boundary, type BB). The type AA system only displays z=1z=1 behavior at all energies and its scaling properties are similar (though not identical) to those of an insulating Heisenberg antiferromagnet. Under suitable conditions precisely stated in this paper, the type BB system displays a crossover from relaxational behavior at low energies to type AA behavior at high energies. A scaling hypothesis is proposed to describe this crossover: we postulate a universal scaling function which determines the entire, temperature-, wavevector-, and frequency-dependent, dynamic, staggered spin susceptibility in terms of 4 measurable, T=0T=0, parameters (determining the distance, energy, and order parameter scales, plus one crossover parameter). The scaling function contains the full scaling behavior in all regimes for both type AA and BB systems. The crossover behavior of the uniform susceptibility and the specific heat is somewhat more complicated and is also discussed. Explicit computation of the crossover functions is carried out in a large NN expansion on a mean-field model. Some new results for the critical properties on the ordered side of the transition are also obtained in a spin-density wave formalism. The possible relevance of our results to the doped cuprate compounds is briefly discussed.Comment: 20 pages, REVTeX, 6 figures (uuencoded compressed PostScript file for figures is appended

    Universal Magnetic Properties of La2δSrδCuO4La_{2-\delta} Sr_{\delta} Cu O_4 at Intermediate Temperatures

    Full text link
    We present the theory of two-dimensional, clean quantum antiferromagnets with a small, positive, zero temperature (TT) stiffness ρs\rho_s, but with the ratio kBT/ρsk_B T / \rho_s arbitrary. Universal scaling forms for the uniform susceptibility (χu\chi_u), correlation length(ξ\xi), and NMR relaxation rate (1/T11/T_1) are proposed and computed in a 1/N1/N expansion and by Mont\'{e}-Carlo simulations. For large kBT/ρsk_B T/\rho_s, χu(T)/T\chi_u (T)/T and Tξ(T)T\xi(T) asymptote to universal values, while 1/T1(T)1/T_{1}(T) is nearly TT-independent. We find good quantitative agreement with experiments and some numerical studies on La2δSrδCuO4La_{2-\delta} Sr_{\delta} Cu O_4.Comment: 14 pages, REVTEX, 1 postscript figure appende

    Heavy-fermion and spin-liquid behavior in a Kondo lattice with magnetic frustration

    Full text link
    We study the competition between the Kondo effect and frustrating exchange interactions in a Kondo-lattice model within a large-N{\cal N} dynamical mean-field theory. We find a T=0 phase transition between a heavy Fermi-liquid and a spin-liquid for a critical value of the exchange Jc=TK0J_c = T_{K}^0, the single-impurity Kondo temperature. Close to the critical point, the Fermi liquid coherence scale TT^\star is strongly reduced and the effective mass strongly enhanced. The regime T>TT>T^\star is characterized by spin-liquid magnetic correlations and non-Fermi-liquid properties. It is suggested that magnetic frustration is a general mechanism which is essential to explain the large effective mass of some metallic compounds such as LiV2_2O4_4.Comment: 7 pages, 1 figure. Late

    Liquid antiferromagnets in two dimensions

    Full text link
    It is shown that, for proper symmetry of the parent lattice, antiferromagnetic order can survive in two-dimensional liquid crystals and even isotropic liquids of point-like particles, in contradiction to what common sense might suggest. We discuss the requirements for antiferromagnetic order in the absence of translational and/or orientational lattice order. One example is the honeycomb lattice, which upon melting can form a liquid crystal with quasi-long-range orientational and antiferromagnetic order but short-range translational order. The critical properties of such systems are discussed. Finally, we draw conjectures for the three-dimensional case.Comment: 4 pages RevTeX, 4 figures include
    corecore