1,944 research outputs found

    Social Responses to Epidemics Depicted by Cinema

    Get PDF
    Films illustrate 2 ways that epidemics can affect societies: fear leading to a breakdown in sociability and fear stimulating preservation of tightly held social norms. The first response is often informed by concern over perceived moral failings within society, the second response by the application of arbitrary or excessive controls from outside the community

    The Female Mortality Advantage in the Seventeenth‐Century Rural Low Countries

    Get PDF
    Data from famines from the nineteenth century onward suggest that women hold a mortality advantage during times of acute malnutrition, while modern laboratory research suggests that women are more resilient to most pathogens causing epidemic diseases. There is, however, a paucity of sex‐disaggregated mortality data for the period prior to the Industrial Revolution to test this view across a broader span of history. We offer a newly compiled database of adult burial information for 293 rural localities and small towns in the seventeenth‐century Low Countries, explicitly comparing mortality crises against ‘normal’ years. In contrast to expected results, we find no clear female mortality advantage during mortality spikes and, more to the point, women tended to die more frequently than men when only taking into account those years with very severe raised mortality. Gender‐related differences in levels of protection, but also exposure to vectors and points of contagion, meant that some of these female advantages were ‘lost’ during food crises or epidemic disease outbreaks. Responses to mortality crises such as epidemics may shine new light on gender‐based inequalities perhaps hidden from view in ‘normal times’ – with relevance for recent work asserting ‘female agency’ in the early modern Low Countries context

    Epidemics, public health workers, and ‘heroism’ in cinematic perspective

    Get PDF
    During COVID-19, acts of ‘heroism’ – particularly by ordinary people ‘from below’ – have been foregrounded, prompting complicated ethical issues in the public health context. By analysing examples from a large corpus of films about epidemics across the twentieth- and twenty-first centuries, this article investigates how cinema has represented public health workers. We find that the public health worker in epidemic-related films tends to be elite or an authority figure with expertise, often male – whose personal burden and sacrifice goes unrecognised by others, or even directly challenged ‘from below’. However, although the public health worker as ‘ordinary hero’ rarely features, the ‘human’ side of epidemiologists, physicians and bacteriologists – through either personal redemption and a return to more humble roots, or recognition of personal error, questioning of official regulations and authorities, and eccentric and unorthodox behaviour – makes these ‘elite’ figures appear more ordinary, bridging the gap between the two

    Analysis of Nematic Liquid Crystals with Disclination Lines

    Full text link
    We investigate the structure of nematic liquid crystal thin films described by the Landau--de Gennes tensor-valued order parameter with Dirichlet boundary conditions of nonzero degree. We prove that as the elasticity constant goes to zero a limiting uniaxial texture forms with disclination lines corresponding to a finite number of defects, all of degree 1/2 or all of degree -1/2. We also state a result on the limiting behavior of minimizers of the Chern-Simons-Higgs model without magnetic field that follows from a similar proof.Comment: 40 pages, 1 figur

    The Magnetic Field of the Solar Corona from Pulsar Observations

    Full text link
    We present a novel experiment with the capacity to independently measure both the electron density and the magnetic field of the solar corona. We achieve this through measurement of the excess Faraday rotation due to propagation of the polarised emission from a number of pulsars through the magnetic field of the solar corona. This method yields independent measures of the integrated electron density, via dispersion of the pulsed signal and the magnetic field, via the amount of Faraday rotation. In principle this allows the determination of the integrated magnetic field through the solar corona along many lines of sight without any assumptions regarding the electron density distribution. We present a detection of an increase in the rotation measure of the pulsar J1801−-2304 of approximately 160 \rad at an elongation of 0.95∘^\circ from the centre of the solar disk. This corresponds to a lower limit of the magnetic field strength along this line of sight of >393ÎŒG> 393\mu\mathrm{G}. The lack of precision in the integrated electron density measurement restricts this result to a limit, but application of coronal plasma models can further constrain this to approximately 20mG, along a path passing 2.5 solar radii from the solar limb. Which is consistent with predictions obtained using extensions to the Source Surface models published by Wilcox Solar ObservatoryComment: 16 pages, 4 figures (1 colour): Submitted to Solar Physic

    Energy Spectrum of Bloch Electrons Under Checkerboard Field Modulations

    Full text link
    Two-dimensional Bloch electrons in a uniform magnetic field exhibit complex energy spectrum. When static electric and magnetic modulations with a checkerboard pattern are superimposed on the uniform magnetic field, more structures and symmetries of the spectra are found, due to the additional adjustable parameters from the modulations. We give a comprehensive report on these new symmetries. We have also found an electric-modulation induced energy gap, whose magnitude is independent of the strength of either the uniform or the modulated magnetic field. This study is applicable to experimentally accessible systems and is related to the investigations on frustrated antiferromagnetism.Comment: 8 pages, 6 figures (reduced in sizes), submitted to Phys. Rev.

    Scalar Dark Matter From Theory Space

    Get PDF
    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to dark matter. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass of order 100 GeV, the second region has a heavy candidate with a mass greater than about 500 GeV$. The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a WIMP (weakly interacting massive particle).Comment: 18 pages, 2 figures, version to appear in PR

    Analytical treatment of SUSY Quasi-normal modes in a non-rotating Schwarzschild black hole

    Full text link
    We use the Fock-Ivanenko formalism to obtain the Dirac equation which describes the interaction of a massless 1/2-spin neutral fermion with a gravitational field around a Schwarzschild black hole (BH). We obtain approximated analytical solutions for the eigenvalues of the energy (quasi-normal frequencies) and their corresponding eigenstates (quasi-normal states). The interesting result is that all the excited states [and their supersymmetric (SUSY) partners] have a purely imaginary frequency, which can be expressed in terms of the Hawking temperature. Furthermore, as one expects for SUSY Hamiltonians, the isolated bottom state has a real null energy eigenvalue.Comment: Version to be published in European Physical Journal

    Completeness in supergravity constructions

    Full text link
    We prove that the supergravity r- and c-maps preserve completeness. As a consequence, any component H of a hypersurface {h=1} defined by a homogeneous cubic polynomial such that -d^2 h is a complete Riemannian metric on H defines a complete projective special Kahler manifold and any complete projective special Kahler manifold defines a complete quaternionic Kahler manifold of negative scalar curvature. We classify all complete quaternionic Kahler manifolds of dimension less or equal to 12 which are obtained in this way and describe some complete examples in 16 dimensions.Comment: 29 page

    Pulsars as Fantastic Objects and Probes

    Full text link
    Pulsars are fantastic objects, which show the extreme states of matters and plasma physics not understood yet. Pulsars can be used as probes for the detection of interstellar medium and even the gravitational waves. Here I review the basic facts of pulsars which should attract students to choose pulsar studies as their future projects.Comment: Invited Lecture on the "First Kodai-Trieste Workshop on Plasma Astrophysics", Kodaikanal Obs, India. Aug.27-Sept.7th, 2007. In: "Turbulence, Dynamos, Accretion Disks, Pulsars and Collective Plasma Processes". Get a copy from: http://www.springerlink.com/content/978-1-4020-8867-
    • 

    corecore