93 research outputs found
Towards a Model-Independent Low Momentum Nucleon-Nucleon Interaction
We provide evidence for a high precision model-independent low momentum
nucleon-nucleon interaction. Performing a momentum-space renormalization group
decimation, we find that the effective interactions constructed from various
high precision nucleon-nucleon interaction models, such as the Paris, Bonn,
Nijmegen, Argonne, CD Bonn and Idaho potentials, are identical. This
model-independent low momentum interaction, called V_{low k}, reproduces the
same phase shifts and deuteron pole as the input potential models, without
ambiguous assumptions on the high momentum components, which are not
constrained by low energy data and lead to model-dependent results in many-body
applications. V_{low k} is energy-independent and does not necessitate the
calculation of the Brueckner G matrix.Comment: 12 pages, 5 figures, minor changes and additions, to appear in Phys.
Lett.
A simple and efficient numerical scheme to integrate non-local potentials
As nuclear wave functions have to obey the Pauli principle, potentials issued
from reaction theory or Hartree-Fock formalism using finite-range interactions
contain a non-local part. Written in coordinate space representation, the
Schrodinger equation becomes integro-differential, which is difficult to solve,
contrary to the case of local potentials, where it is an ordinary differential
equation. A simple and powerful method has been proposed several years ago,
with the trivially equivalent potential method, where non-local potential is
replaced by an equivalent local potential, which is state-dependent and has to
be determined iteratively. Its main disadvantage, however, is the appearance of
divergences in potentials if the wave functions have nodes, which is generally
the case. We will show that divergences can be removed by a slight modification
of the trivially equivalent potential method, leading to a very simple, stable
and precise numerical technique to deal with non-local potentials. Examples
will be provided with the calculation of the Hartree-Fock potential and
associated wave functions of 16O using the finite-range N3LO realistic
interaction.Comment: 8 pages, 2 figures, submitted to Eur. Phys. J.
Analysis of three-nucleon forces effects in the system
Using modern nucleon-nucleon interactions in the description of the
nuclear systems the per datum results to be much bigger than one. In
particular it is not possible to reproduce the three- and four-nucleon binding
energies and the scattering length simultaneously. This is one
manifestation of the necessity of including a three-nucleon force in the
nuclear Hamiltonian. In this paper we perform an analysis of some, widely used,
three-nucleon force models. We analyze their capability to describe the
aforementioned quantities and, to improve their description, we propose
modifications in the parametrization of the models. The effects of these new
parametrization are studied in some polarization observables at low energies.Comment: 10 pages, to be published in Few-Body Systems. Presented at the
workshop on "Relativistic Description of Two- and Three-body Systems in
Nuclear Physics" ECT* Trento, 19 - 23 October 200
Nuclear Spin-Isospin Correlations, Parity Violation, and the Problem
The strong interaction effects of isospin- and spin-dependent nucleon-nucleon
correlations observed in many-body calculations are interpreted in terms of a
one-pion exchange mechanism. Including such effects in computations of nuclear
parity violating effects leads to enhancements of about 10%. A larger effect
arises from the one-boson exchange nature of the parity non-conserving nucleon-
nucleon interaction, which depends on both weak and strong meson-nucleon
coupling constants. Using values of the latter that are constrained by
nucleon-nucleon phase shifts leads to enhancements of parity violation by
factors close to two. Thus much of previously noticed discrepancies between
weak coupling constants extracted from different experiments can be removed.Comment: 8 pages 2 figures there should have been two figures in v
Comparison between chiral and meson-theoretic nucleon-nucleon potentials through (p,p') reactions
We use proton-nucleus reaction data at intermediate energies to test the
emerging new generation of chiral nucleon-nucleon (NN) potentials. Predictions
from a high quality one-boson-exchange (OBE) force are used for comparison and
evaluation. Both the chiral and OBE models fit NN phase shifts accurately, and
the differences between the two forces for proton-induced reactions are small.
A comparison to a chiral model with a less accurate NN description sets the
scale for the ability of such models to work for nuclear reactions.Comment: 6 pages, revtex, 4 eps-figure
Nonlocal calculation for nonstrange dibaryons and tribaryons
We study the possible existence of nonstrange dibaryons and tribaryons by
solving the bound-state problem of the two- and three-body systems composed of
nucleons and deltas. The two-body systems are , , and
, while the three-body systems are , ,
, and . We use as input the nonlocal ,
, and potentials derived from the chiral quark cluster
model by means of the resonating group method. We compare with previous results
obtained from the local version based on the Born-Oppenheimer approximation.Comment: 19 pages. To be published in Physical Review
Ab-initio calculation of the binding energy with the Hybrid Multideterminant scheme
We perform an ab-initio calculation for the binding energy of using
the CD-Bonn 2000 NN potential renormalized with the Lee-Suzuki method. The
many-body approach to the problem is the Hybrid Multideterminant method. The
results indicate a binding energy of about , within a few hundreds KeV
uncertainty. The center of mass diagnostics are also discussed.Comment: 18 pages with 3 figures. More calculations added, to be published in
EPJ
Two-Nucleon Scattering without partial waves using a momentum space Argonne V18 interaction
We test the operator form of the Fourier transform of the Argonne V18
potential by computing selected scattering observables and all Wolfenstein
parameters for a variety of energies. These are compared to the GW-DAC database
and to partial wave calculations. We represent the interaction and transition
operators as expansions in a spin-momentum basis. In this representation the
Lippmann-Schwinger equation becomes a six channel integral equation in two
variables. Our calculations use different numbers of spin-momentum basis
elements to represent the on- and off-shell transition operators. This is
because different numbers of independent spin-momentum basis elements are
required to expand the on- and off-shell transition operators. The choice of on
and off-shell spin-momentum basis elements is made so that the coefficients of
the on-shell spin-momentum basis vectors are simply related to the
corresponding off-shell coefficients.Comment: 14 pages, 8 Figures, typos correcte
Conference Discussion of the Nuclear Force
Discussion of the nuclear force, lead by a round table consisting of T.
Cohen, E. Epelbaum, R. Machleidt, and F. Gross (chair). After an invited talk
by Machleidt, published elsewhere in these proceedings, brief remarks are made
by Epelbaum, Cohen, and Gross, followed by discussion from the floor moderated
by the chair. The chair asked the round table and the participants to focus on
the following issues: (i) What does each approach (chiral effective field
theory, large Nc, and relativistic phenomenology) contribute to our knowledge
of the nuclear force? Do we need them all? Is any one transcendent? (ii) How
important for applications (few body, nuclear structure, EMC effect, for
example) are precise fits to the NN data below 350 MeV? How precise do these
fits have to be? (iii) Can we learn anything about nonperturbative QCD from
these studies of the nuclear force? The discussion presented here is based on a
video recording made at the conference and transcribed afterward.Comment: Discussion at the 21st European Conference on Few Body Problems
(EFP21) held at Salamanca, Spain, 30 Aug - 3 Sept 201
Deconstructing 1S0 nucleon-nucleon scattering
A distorted-wave method is used to analyse nucleon-nucleon scattering in the
1S0 channel. Effects of one-pion exchange are removed from the empirical phase
shift to all orders by using a modified effective-range expansion. Two-pion
exchange is then subtracted in the distorted-wave Born approximation, with
matrix elements taken between scattering waves for the one-pion exchange
potential. The residual short-range interaction shows a very rapid energy
dependence for kinetic energies above about 100 MeV, suggesting that the
breakdown scale of the corresponding effective theory is only 270MeV. This may
signal the need to include the Delta resonance as an explicit degree of freedom
in order to describe scattering at these energies. An alternative strategy of
keeping the cutoff finite to reduce large, but finite, contributions from the
long-range forces is also discussed.Comment: 10 pages, 2 figures (introduction revised, references added; version
to appear in EPJA
- …
