3 research outputs found

    Saturation of dephasing time in mesoscopic devices produced by a ferromagnetic state

    Full text link
    We consider an exchange model of itinerant electrons in a Heisenberg ferromagnet and we assume that the ferromagnet is in a fully polarized state. Using the Holstein-Primakoff transformation we are able to obtain a boson-fermion Hamiltonian that is well-known in the interaction between light and matter. This model describes the spontaneous emission in two-level atoms that is the proper decoherence mechanism when the number of modes of the radiation field is taken increasingly large, the vacuum acting as a reservoir. In the same way one can see that the interaction between the bosonic modes of spin waves and an itinerant electron produces decoherence by spin flipping with a rate proportional to the size of the system. In this way we are able to show that the experiments on quantum dots, described in D. K. Ferry et al. [Phys. Rev. Lett. {\bf 82}, 4687 (1999)], and nanowires, described in D. Natelson et al. [Phys. Rev. Lett. {\bf 86}, 1821 (2001)], can be understood as the interaction of itinerant electrons and an electron gas in a fully polarized state.Comment: 10 pages, no figure. Changed title. Revised version accepted for publication in Physical Review

    Probe-configuration dependent dephasing in a mesoscopic interferometer

    Full text link
    Dephasing in a ballistic four-terminal Aharonov-Bohm geometry due to charge and voltage fluctuations is investigated. Treating two terminals as voltage probes, we find a strong dependence of the dephasing rate on the probe configuration in agreement with a recent experiment by Kobayashi et al. (J. Phys. Soc. Jpn. 71, 2094 (2002)). Voltage fluctuations in the measurement circuit are shown to be the source of the configuration dependence.Comment: 4 pages, 3 figure

    Two-species percolation and Scaling theory of the metal-insulator transition in two dimensions

    Full text link
    Recently, a simple non-interacting-electron model, combining local quantum tunneling via quantum point contacts and global classical percolation, has been introduced in order to describe the observed ``metal-insulator transition'' in two dimensions [1]. Here, based upon that model, a two-species-percolation scaling theory is introduced and compared to the experimental data. The two species in this model are, on one hand, the ``metallic'' point contacts, whose critical energy lies below the Fermi energy, and on the other hand, the insulating quantum point contacts. It is shown that many features of the experiments, such as the exponential dependence of the resistance on temperature on the metallic side, the linear dependence of the exponent on density, the e2/he^2/h scale of the critical resistance, the quenching of the metallic phase by a parallel magnetic field and the non-monotonic dependence of the critical density on a perpendicular magnetic field, can be naturally explained by the model. Moreover, details such as the nonmonotonic dependence of the resistance on temperature or the inflection point of the resistance vs. parallel magnetic are also a natural consequence of the theory. The calculated parallel field dependence of the critical density agrees excellently with experiments, and is used to deduce an experimental value of the confining energy in the vertical direction. It is also shown that the resistance on the ``metallic'' side can decrease with decreasing temperature by an arbitrary factor in the degenerate regime (TEFT\lesssim E_F).Comment: 8 pages, 8 figure
    corecore