1,518 research outputs found

    Fracturing rock with ultra high pressure water

    Get PDF
    Modelling issues are considered for the process of cracking rock in mines using ultra high pressure water. The elevated pressures are caused by the ignition of a propellant and may be as large as 1000MPa. We first consider time, length and pressure scales and then derive a model for the propagation of a two-dimensional crack. A number of aspects of this model are considered and similarity solutions and behaviour near the crack tip are investigated. Consideration is given to a simplified model where the elastic component of the interaction between the rock and the fluid is handled using an elementary closure law: in this case much progress may be made and closed-form solutions may be determined. Conditions are also identified where a model based on “impulsive” lubrication theory is appropriate. However, this leads to a very challenging problem. Finally, some other ways of extending the model to include (for example) fluid leak-off into the rock are discussed

    OL-051 Detect the gene expression influence after the interaction between HCV NS4A and CAML with microarray assay

    Get PDF

    Rare Decay Modes of Quarter BPS Dyons

    Get PDF
    The degeneracy of quarter BPS dyons in N=4 supersymmetric string theories is known to jump across walls of marginal stability on which a quarter BPS dyon can decay into a pair of half BPS dyons. We show that as long as the electric and magnetic charges of the original dyon are primitive elements of the charge lattice, the subspaces of the moduli space on which a quarter BPS dyon becomes marginally unstable against decay into a pair of quarter BPS dyons or a half BPS dyon and a quarter BPS dyon are of codimension two or more. As a result any pair of generic points in the moduli space can be connected by a path avoiding these subspaces and there is no jump in the spectrum associated with these subspaces.Comment: LaTeX file, 9 pages; v2: a minor logical error corrected with no change in the result

    How Do Black Holes Predict the Sign of the Fourier Coefficients of Siegel Modular Forms?

    Get PDF
    Single centered supersymmetric black holes in four dimensions have spherically symmetric horizon and hence carry zero angular momentum. This leads to a specific sign of the helicity trace index associated with these black holes. Since the latter are given by the Fourier expansion coefficients of appropriate meromorphic modular forms of Sp(2,Z) or its subgroup, we are led to a specific prediction for the signs of a subset of these Fourier coefficients which represent contributions from single centered black holes only. We explicitly test these predictions for the modular forms which compute the index of quarter BPS black holes in heterotic string theory on T^6, as well as in Z_N CHL models for N=2,3,5,7.Comment: LaTeX file, 17 pages, 1 figur

    A Novel Approach to the Common Due-Date Problem on Single and Parallel Machines

    Full text link
    This paper presents a novel idea for the general case of the Common Due-Date (CDD) scheduling problem. The problem is about scheduling a certain number of jobs on a single or parallel machines where all the jobs possess different processing times but a common due-date. The objective of the problem is to minimize the total penalty incurred due to earliness or tardiness of the job completions. This work presents exact polynomial algorithms for optimizing a given job sequence for single and identical parallel machines with the run-time complexities of O(nlogn)O(n \log n) for both cases, where nn is the number of jobs. Besides, we show that our approach for the parallel machine case is also suitable for non-identical parallel machines. We prove the optimality for the single machine case and the runtime complexities of both. Henceforth, we extend our approach to one particular dynamic case of the CDD and conclude the chapter with our results for the benchmark instances provided in the OR-library.Comment: Book Chapter 22 page

    Scaling in Plasticity-Induced Cell-Boundary Microstructure: Fragmentation and Rotational Diffusion

    Full text link
    We develop a simple computational model for cell boundary evolution in plastic deformation. We study the cell boundary size distribution and cell boundary misorientation distribution that experimentally have been found to have scaling forms that are largely material independent. The cell division acts as a source term in the misorientation distribution which significantly alters the scaling form, giving it a linear slope at small misorientation angles as observed in the experiments. We compare the results of our simulation to two closely related exactly solvable models which exhibit scaling behavior at late times: (i) fragmentation theory and (ii) a random walk in rotation space with a source term. We find that the scaling exponents in our simulation agree with those of the theories, and that the scaling collapses obey the same equations, but that the shape of the scaling functions depend upon the methods used to measure sizes and to weight averages and histograms

    Dyon Death Eaters

    Get PDF
    We study general two-body decays of primitive and non-primitive 1/4-BPS dyons in four-dimensional type IIB string compactifications. We find a ``master equation'' for marginal stability that generalises the curve found by Sen for half-BPS decay, and analyse this equation in a variety of cases including decays to 1/4-BPS products. For half-BPS decays, an interesting and useful relation is exhibited between walls of marginal stability and the mathematics of Farey sequences and Ford circles. We exhibit an example in which two curves of marginal stability intersect in the interior of moduli space.Comment: 24 pages, 1 figure, v2: section on non-primitive dyons slightly modified and expanded, few other small change

    Chiral radiative corrections and D_s(2317)/D(2308) mass puzzle

    Full text link
    We show that one loop chiral corrections for heavy-light mesons in potential model can explain the small mass of D_s(2317) as well as the small mass gap between D_s(2317) and D(2308).Comment: To appear in EPJC. A figure and references addede

    The mixed black hole partition function for the STU model

    Full text link
    We evaluate the mixed partition function for dyonic BPS black holes using the recently proposed degeneracy formula for the STU model. The result factorizes into the OSV mixed partition function times a proportionality factor. The latter is in agreement with the measure factor that was recently conjectured for a class of N=2 black holes that contains the STU model.Comment: 14 page

    Three String Junction and N=4 Dyon Spectrum

    Get PDF
    The exact spectrum of dyons in a class of N=4 supersymmetric string theories gives us information about dyon spectrum in N=4 supersymmetric gauge theories. This in turn can be translated into prediction about the BPS spectrum of three string junctions on a configuration of three parallel D3-branes. We show that this prediction agrees with the known spectrum of three string junction in different domains in the moduli space separated by walls of marginal stability.Comment: LaTeX file, 14 page
    corecore