Modelling issues are considered for the process of cracking rock in mines using ultra high pressure water. The elevated pressures are caused by the ignition of a propellant and may be as large as 1000MPa. We first consider time, length and pressure scales and then derive a model for the propagation of a two-dimensional crack. A number of aspects of this model are considered and similarity solutions and behaviour near the crack tip are investigated. Consideration is given to a simplified model where the elastic component of the interaction between the rock and the fluid is handled using an elementary closure law: in this case much progress may be made and closed-form solutions may be determined. Conditions are also identified where a model based on “impulsive” lubrication theory is appropriate. However, this leads to a very challenging problem. Finally, some other ways of extending the model to include (for example) fluid leak-off into the rock are discussed