142 research outputs found
Rotating group design for vane pump flow ripple reduction
It is well known that the hydraulic pump is the main source of noise in hydraulic power steering systems. This noise is produced by the pulsating flow transmitted through the fluid due to the cyclic pumping mechanism. This flow ripple and pressure ripple spread through the hydraulic circuit, interacting in a complex way with other parts of the vehicle. This process generates annoying audible noise inside the vehicle. This work addresses a new approach to flow ripple reduction by tuning the pump rotating group. The method consists of making the outlet flow as steady as possible by modifying the rotating group geometry. A MATLAB/Simulink-based pump model has been created according to the new geometrical characteristics and their numerical results, compared to the regular pump ones. In addition, a flow ripple experiment was conducted using the secondary source method (SSM to validate the numerically-predicted results of the regular pump. The results of the new design show significant amplitude reduction of the flow ripple amplitudes at different operating conditions. In particular, the flow ripple reduction at the first harmonic is almost 20 dB when the pump runs in a parking manoeuvres operating condition (1000 rpm at 50 bar of backpressure)
Meshfree finite differences for vector Poisson and pressure Poisson equations with electric boundary conditions
We demonstrate how meshfree finite difference methods can be applied to solve
vector Poisson problems with electric boundary conditions. In these, the
tangential velocity and the incompressibility of the vector field are
prescribed at the boundary. Even on irregular domains with only convex corners,
canonical nodal-based finite elements may converge to the wrong solution due to
a version of the Babuska paradox. In turn, straightforward meshfree finite
differences converge to the true solution, and even high-order accuracy can be
achieved in a simple fashion. The methodology is then extended to a specific
pressure Poisson equation reformulation of the Navier-Stokes equations that
possesses the same type of boundary conditions. The resulting numerical
approach is second order accurate and allows for a simple switching between an
explicit and implicit treatment of the viscosity terms.Comment: 19 pages, 7 figure
Observational Constraints on the Modified Gravity Model (MOG) Proposed by Moffat: Using the Magellanic System
A simple model for the dynamics of the Magellanic Stream (MS), in the
framework of modified gravity models is investigated. We assume that the galaxy
is made up of baryonic matter out of context of dark matter scenario. The model
we used here is named Modified Gravity (MOG) proposed by Moffat (2005). In
order to examine the compatibility of the overall properties of the MS under
the MOG theory, the observational radial velocity profile of the MS is compared
with the numerical results using the fit method. In order to obtain
the best model parameters, a maximum likelihood analysis is performed. We also
compare the results of this model with the Cold Dark Matter (CDM) halo model
and the other alternative gravity model that proposed by Bekenstein (2004), so
called TeVeS. We show that by selecting the appropriate values for the free
parameters, the MOG theory seems to be plausible to explain the dynamics of the
MS as well as the CDM and the TeVeS models.Comment: 14 pages, 3 Figures, accepted in Int. J. Theor. Phy
Electronic localization at mesoscopic length scales: different definitions of localization and contact effects in a heuristic DNA model
In this work we investigate the electronic transport along model DNA
molecules using an effective tight-binding approach that includes the backbone
on site energies. The localization length and participation number are examined
as a function of system size, energy dependence, and the contact coupling
between the leads and the DNA molecule. On one hand, the transition from an
diffusive regime to a localized regime for short systems is identified,
suggesting the necessity of a further length scale revealing the system borders
sensibility. On the other hand, we show that the lenght localization and
participation number, do not depended of system size and contact coupling in
the thermodynamic limit. Finally we discuss possible length dependent origins
for the large discrepancies among experimental results for the electronic
transport in DNA sample
Advances in multispectral and hyperspectral imaging for archaeology and art conservation
Multispectral imaging has been applied to the field of art conservation and art history since the early 1990s. It is attractive as a noninvasive imaging technique because it is fast and hence capable of imaging large areas of an object giving both spatial and spectral information. This paper gives an overview of the different instrumental designs, image processing techniques and various applications of multispectral and hyperspectral imaging to art conservation, art history and archaeology. Recent advances in the development of remote and versatile multispectral and hyperspectral imaging as well as techniques in pigment identification will be presented. Future prospects including combination of spectral imaging with other noninvasive imaging and analytical techniques will be discussed
Weak lensing, dark matter and dark energy
Weak gravitational lensing is rapidly becoming one of the principal probes of
dark matter and dark energy in the universe. In this brief review we outline
how weak lensing helps determine the structure of dark matter halos, measure
the expansion rate of the universe, and distinguish between modified gravity
and dark energy explanations for the acceleration of the universe. We also
discuss requirements on the control of systematic errors so that the
systematics do not appreciably degrade the power of weak lensing as a
cosmological probe.Comment: Invited review article for the GRG special issue on gravitational
lensing (P. Jetzer, Y. Mellier and V. Perlick Eds.). V3: subsection on
three-point function and some references added. Matches the published versio
Electron Spin Polarization in Resonant Interband Tunneling Devices
We study spin-dependent interband resonant tunneling in double-barrier
InAs/AlSb/ GaMnSb heterostructures. We demonstrate that these structures can be
used as spin filters utilizing spin-selective tunneling of electrons through
the light-hole resonant channel. High densities of the spin polarized electrons
injected into bulk InAs make spin resonant tunneling devices a viable
alternative for injecting spins into a semiconductor. Another striking feature
of the proposed devices is the possibility of inducing additional resonant
channels corresponding to the heavy holes. This can be implemented by
saturating the in-plane magnetization in the quantum well.Comment: 11 pages, 4 eps figure
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
- …