97 research outputs found

    Ferromagnetism and Canted Spin Phase in AlAs/GaMnAs Single Quantum Wells: Monte Carlo Simulation

    Full text link
    The magnetic order resulting from a confinement-adapted Ruderman-Kittel-Kasuya-Yosida indirect exchange between magnetic moments in the metallic phase of a AlAs/Ga(1-x)Mn(x)As quantum well is studied by Monte Carlo simulation. This coupling mechanism involves magnetic moments and carriers (holes), both coming from the same Mn(2+) ions. It leads to a paramagnetic, a ferromagnetic, or a canted spin phase, depending on the carrier concentration, and on the magnetic layer width. It is shown that high transition temperatures may be obtained.Comment: 7 figure

    Bianchi type II models in the presence of perfect fluid and anisotropic dark energy

    Full text link
    Spatially homogeneous but totally anisotropic and non-flat Bianchi type II cosmological model has been studied in general relativity in the presence of two minimally interacting fluids; a perfect fluid as the matter fluid and a hypothetical anisotropic fluid as the dark energy fluid. The Einstein's field equations have been solved by applying two kinematical ans\"{a}tze: we have assumed the variation law for the mean Hubble parameter that yields a constant value of deceleration parameter, and one of the components of the shear tensor has been considered proportional to the mean Hubble parameter. We have particularly dwelled on the accelerating models with non-divergent expansion anisotropy as the Universe evolves. Yielding anisotropic pressure, the fluid we consider in the context of dark energy, can produce results that can be produced in the presence of isotropic fluid in accordance with the \Lambda CDM cosmology. However, the derived model gives additional opportunities by being able to allow kinematics that cannot be produced in the presence of fluids that yield only isotropic pressure. We have obtained well behaving cases where the anisotropy of the expansion and the anisotropy of the fluid converge to finite values (include zero) in the late Universe. We have also showed that although the metric we consider is totally anisotropic, the anisotropy of the dark energy is constrained to be axially symmetric, as long as the overall energy momentum tensor possesses zero shear stress.Comment: 15 pages; 5 figures; matches the version published in The European Physical Journal Plu

    Observational constraint on generalized Chaplygin gas model

    Get PDF
    We investigate observational constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy from the latest observational data: the Union SNe Ia data, the observational Hubble data, the SDSS baryon acoustic peak and the five-year WMAP shift parameter. It is obtained that the best fit values of the GCG model parameters with their confidence level are As=0.730.06+0.06A_{s}=0.73^{+0.06}_{-0.06} (1σ1\sigma) 0.09+0.09^{+0.09}_{-0.09} (2σ)(2\sigma), α=0.090.12+0.15\alpha=-0.09^{+0.15}_{-0.12} (1σ1\sigma) 0.19+0.26^{+0.26}_{-0.19} (2σ)(2\sigma). Furthermore in this model, we can see that the evolution of equation of state (EOS) for dark energy is similar to quiessence, and its current best-fit value is w0de=0.96w_{0de}=-0.96 with the 1σ1\sigma confidence level 0.91w0de1.00-0.91\geq w_{0de}\geq-1.00.Comment: 9 pages, 5 figure

    Applied aspects of pineapple flowering

    Full text link
    corecore