21 research outputs found

    Evolution of precipitates, in particular cruciform and cuboid particles, during simulated direct charging of thin slab cast vanadium microalloyed steels

    Get PDF
    A study has been undertaken of four vanadium based steels which have been processed by a simulated direct charging route using processing parameters typical of thin slab casting, where the cast product has a thickness of 50 to 80mm ( in this study 50 mm) and is fed directly to a furnace to equalise the microstructure prior to rolling. In the direct charging process, cooling rates are faster, equalisation times shorter and the amount of deformation introduced during rolling less than in conventional practice. Samples in this study were quenched after casting, after equalisation, after 4th rolling pass and after coiling, to follow the evolution of microstructure. The mechanical and toughness properties and the microstructural features might be expected to differ from equivalent steels, which have undergone conventional processing. The four low carbon steels (~0.06wt%) which were studied contained 0.1wt%V (V-N), 0.1wt%V and 0.010wt%Ti (V-Ti), 0.1wt%V and 0.03wt%Nb (V-Nb), and 0.1wt%V, 0.03wt%Nb and 0.007wt%Ti (V-Nb-Ti). Steels V-N and V-Ti contained around 0.02wt% N, while the other two contained about 0.01wt%N. The as-cast steels were heated at three equalising temperatures of 1050C, 1100C or 1200C and held for 30-60 minutes prior to rolling. Optical microscopy and analytical electron microscopy, including parallel electron energy loss spectroscopy (PEELS), were used to characterise the precipitates. In the as-cast condition, dendrites and plates were found. Cuboid particles were seen at this stage in Steel V-Ti, but they appeared only in the other steels after equalization. In addition, in the final product of all the steels, fine particles were seen, but it was only in the two titanium steels that cruciform precipitates were present. PEELS analysis showed that the dendrites, plates, cuboids, cruciforms and fine precipitates were essentially nitrides. The two Ti steels had better toughness than the other steels but inferior lower yield stress values. This was thought to be, in part, due to the formation of cruciform precipitates in austenite, thereby removing nitrogen and the microalloying elements which would have been expected to precipitate in ferrite as dispersion hardening particles

    The hot ductility of steels

    No full text
    Available from British Library Document Supply Centre- DSC:D69945/86 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    The effect of vanadium and niobium on the properties and microstructure of the intercritically reheated coarse grained heat affected zone in low carbon microalloyed steels

    No full text
    Four steels, C-Mn-0.05V, C-Mn-0.11V, C-Mn and C-Mn-0.03Nb, all essentially boron-free were subjected to processing to simulate the microstructure of a coarse grained heat affected zone (GC HAZ) and an intercritically reheated coarse grained HAZ (IC GC HAZ). This involved reheating to 1 350°C, rapid cooling (Dt8/524 s) to room temperature and then reheating to either 750°C or 800°C. The toughness of the simulated GC HAZ and IC GC HAZ was assessed using both Charpy and CTOD tests and the hardness of both zones was also measured. A detailed assessment of the size and area fraction of martensite-austenite (MA) phase in the IC GC HAZ in the steels was obtained from a combination of Scanning Electron Microscopy (SEM) and Image Analysis of the resultant SEM micrographs. In addition, the distribution of the M-A phase was examined by observing 250 fields at a magnification of 2 500 times in the SEM for each of the steels. It is clear that the alloying addition has a significant effect on the amount and size of the M-A phase. The addition of 0.05% V to the C-Mn steel resulted in the lowest IC GC HAZ Charpy 50J impact transition temperature and the 0.1 mm CTOD transition temperature. The corresponding size and area fraction of the M-A phase were the smallest of the four steels. Raising the level of vanadium to 0.11% caused a deterioration in IC GC HAZ toughness, which was reflected in a greater area fraction of M-A phase, larger mean and maximum sizes of M-A particles and significantly more fields containing M-A phase. The addition of 0.03%Nb produced poorer IC GC HAZ toughness data than C-Mn-V and C-Mn steels and this was related to the large size and area fraction of M-A phase quantified in the Nb steel. The presence of M-A phase is considered to be the dominant factor in determining the toughness of IC GC HAZ

    The effects of vanadium, niobium, titanium and zirconium on the microstructure and mechanical properties of thin slab cast steels

    No full text
    The evolution of precipitation and microstructure during a simulation of the thin slab direct rolling process, in six vanadium based, low carbon, steels with V, V-N, V-Ti-N, V-Nb, V-Nb-Ti and V-Zr additions was studied by optical microscopy, analytical transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and parallel electron energy loss spectroscopy (PEELS). Tensile properties and Charpy vee-notch toughness of the final strip were also determined. The effects of microalloying additions and processing conditions, including equalisation temperature (1 200°C, 1 100°C and 1 050°C) and end water cool temperature, on the austenite and ferrite grain sizes, as well as the type and composition of the precipitates, were determined. The relationship between the microstructure and the properties in the steels was also ascertained

    Austenite Grain Growth in Peritectic Solidified Carbon Steels Analyzed by Phase-Field Simulation

    Get PDF
    Formation of coarse columnar grains (CCG) in as-cast austenite structure of peritectic carbon steels is one of the serious problems in continuous casting processes. It was recently elucidated that the formation of CCG is ascribed to a discontinuous grain growth. Furthermore, the critical condition for the discontinuous growth to occur was elicited on the basis of phase field simulations and a theory of grain growth. In this study, by means of the phase field simulations, the detailed investigation is carried out for grain coarsening of as-cast austenite structure. It is demonstrated in the two-dimensional simulations that the coarsest grain structure emerges by the discontinuous growth in the vicinity of the critical condition. In addition, a model for predicting the upper limit of grain size during the discontinuous growth is proposed. The model successfully describes the experimental result with reasonable accuracy

    Experimental Verification of a Critical Condition for the Formation of As-Cast Coarse Columnar Austenite Grain Structure in a Hyperperitectic Carbon Steel

    Get PDF
    Experimental verification of a critical condition for the formation of coarse columnar gamma grain (CCG) structure in as-cast hyperperitectic carbon steels, which was put forward based on theories of grain growth and phase-field simulations in early studies, is carried out by means of a Bridgman-type directional solidification experiment. The occurrence of the discontinuous and continuous grain growth processes and the resulting formation of CCG and equiaxed gamma grain structures, respectively, are demonstrated. Importantly, these changes of the as-cast microstructures and the grain growth modes are in excellent agreement with the previously proposed critical condition of the CCG formation. (C) The Minerals, Metals & Materials Society and ASM International 201
    corecore