26 research outputs found

    Local rewiring of genome-nuclear lamina interactions by transcription

    Get PDF
    Transcriptionally inactive genes are often positioned at the nuclear lamina (NL), as part of large lamina-associated domains (LADs). Activation of such genes is often accompanied by repositioning toward the nuclear interior. How this process works and how it impacts flanking chromosomal regions are poorly understood. We addressed these questions by systematic activation or inactivation of individual genes, followed by detailed genome-wide analysis of NL interactions, replication timing, and transcription patterns. Gene activation inside LADs typically causes NL detachment of the entire transcription unit, but rarely more than 50-100 kb of flanking DNA, even when multiple neighboring genes are activated. The degree of detachment depends on the expression level and the length of the activated gene. Loss of NL interactions coincides with a switch from late to early replication timing, but the latter can involve longer stretches of DNA. Inactivation of active genes can lead to increased NL contacts. These extensive datasets are a resource for the analysis of LAD rewiring by transcription and reveal a remarkable flexibility of interphase chromosomes

    Ultrahigh energy neutrinos at the pierre auger observatory

    Get PDF
    The observation of ultrahigh energy neutrinos (UHEs) has become a priority in experimental astroparticle physics. UHEs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ) or in the Earth crust (Earth-skimming ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHEs in the data collected with the ground array of the Pierre Auger Observatory.This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEs in the EeV range and above

    Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    Get PDF
    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E > = 6×1019 eV by analyzing cosmic rays with energies above E > = 5×1018 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources

    Evaluation of methods for volumetric analysis of pediatric brain data: The childmetrix pipeline versus adult-based approaches

    No full text
    Pediatric brain volumetric analysis based on Magnetic Resonance Imaging (MRI) is of particular interest in order to understand the typical brain development and to characterize neurodevelopmental disorders at an early age. However, it has been shown that the results can be biased due to head motion, inherent to pediatric data, and due to the use of methods based on adult brain data that are not able to accurately model the anatomical disparity of pediatric brains. To overcome these issues, we proposed childmetrix, a tool developed for the analysis of pediatric neuroimaging data that uses an age-specific atlas and a probabilistic model-based approach in order to segment the gray matter (GM) and white matter (WM). The tool was extensively validated on 55 scans of children between 5 and 6 years old (including 13 children with developmental dyslexia) and 10 pairs of test-retest scans of children between 6 and 8 years old and compared with two state-of-the-art methods using an adult atlas, namely icobrain (applying a probabilistic model-based segmentation) and Freesurfer (applying a surface model-based segmentation). The results obtained with childmetrix showed a better reproducibility of GM and WM segmentations and a better robustness to head motion in the estimation of GM volume compared to Freesurfer. Evaluated on two subjects, childmetrix showed good accuracy with 82–84% overlap with manual segmentation for both GM and WM, thereby outperforming the adult-based methods (icobrain and Freesurfer), especially for the subject with poor quality data. We also demonstrated that the adult-based methods needed double the number of subjects to detect significant morphological differences between dyslexics and typical readers. Once further developed and validated, we believe that childmetrix would provide appropriate and reliable measures for the examination of children's brain

    Non-invasive assessment of disease progression and neuroprotective effects of dietary coconut oil supplementation in the ALS SOD1G93A mouse model: A 1H-magnetic resonance spectroscopic study

    No full text
    Amyotrophic Lateral Sclerosis (ALS) is an incurable neurodegenerative disease primarily characterized by progressive degeneration of motor neurons in the motor cortex, brainstem and spinal cord. Due to relatively fast progression of ALS, early diagnosis is essential for possible therapeutic intervention and disease management. To identify potential diagnostic markers, we investigated age-dependent effects of disease onset and progression on regional neurochemistry in the SOD1G93A ALS mouse model using localized in vivo magnetic resonance spectroscopy (MRS). We focused mainly on the brainstem region since brainstem motor nuclei are the primarily affected regions in SOD1G93A mice and ALS patients. In addition, metabolite profiles of the motor cortex were also assessed. In the brainstem, a gradual decrease in creatine levels were detected starting from the pre-symptomatic age of 70 days postpartum. During the early symptomatic phase (day 90), a significant increase in the levels of the inhibitory neurotransmitter γ- aminobutyric acid (GABA) was measured. At later time points, alterations in the form of decreased NAA, glutamate, glutamine and increased myo-inositol were observed. Also, decreased glutamate, NAA and increased taurine levels were seen at late stages in the motor cortex. A proof-of-concept (PoC) study was conducted to assess the effects of coconut oil supplementation in SODG93A mice. The PoC revealed that the coconut oil supplementation together with the regular diet delayed disease symptoms, enhanced motor performance, and prolonged survival in the SOD1G93A mouse model. Furthermore, MRS data showed stable metabolic profile at day 120 in the coconut oil diet group compared to the group receiving a standard diet without coconut oil supplementation. In addition, a positive correlation between survival and the neuronal marker NAA was found. To the best of our knowledge, this is the first study that reports metabolic changes in the brainstem using in vivo MRS and effects of coconut oil supplementation as a prophylactic treatment in SOD1G93A mice. Keywords: Amyotrophic lateral sclerosis, Magnetic resonance spectroscopy, SOD1G93A, Coconut oil, Brain metabolism, Creatin

    Post-acquisition water-signal removal in 3D water-unsuppressed (1) H-MR spectroscopic imaging of the prostate.

    No full text
    PURPOSE: To develop a robust processing procedure of raw signals from water-unsuppressed MRSI of the prostate for the mapping of absolute tissue concentrations of metabolites. METHODS: Water-unsuppressed 3D MRSI data were acquired from a phantom, from healthy volunteers, and a patient with prostate cancer. Signal processing included sequential computation of the modulus of the FID to remove water sidebands, a Hilbert transformation, and k-space Hamming filtering. For the removal of the water signal, we compared Löwner tensor-based blind source separation (BSS) and Hankel Lanczos singular value decomposition techniques. Absolute metabolite levels were quantified with LCModel and the results were statistically analyzed to compare the water removal methods and conventional water-suppressed MRSI. RESULTS: The post-processing algorithms successfully removed the water signal and its sidebands without affecting metabolite signals. The best water removal performance was achieved by Löwner tensor-based BSS. Absolute tissue concentrations of citrate in the peripheral zone derived from water-suppressed and unsuppressed (1) H MRSI were the same and as expected from the known physiology of the healthy prostate. Maps for citrate and choline from water-unsuppressed 3D (1) H-MRSI of the prostate showed expected spatial variations in metabolite levels. CONCLUSION: We developed a robust relatively simple post-processing method of water-unsuppressed MRSI of the prostate to remove the water signal. Absolute quantification using the water signal, originating from the same location as the metabolite signals, avoids the acquisition of additional reference data

    Exploiting spatial information to estimate metabolite levels in two-dimensional MRSI of heterogeneous brain lesions

    No full text
    MRSI provides MR spectra from multiple adjacent voxels within a body volume represented as a two- or three-dimensional matrix, allowing the measurement of the distribution of metabolites over this volume. The spectra of these voxels are usually analyzed one by one, without exploiting their spatial context. In this article, we present an advanced metabolite quantification method for MRSI data, in which the available spatial information is considered. A nonlinear least-squares algorithm is proposed in which prior knowledge is included in the form of proximity constraints on the spectral parameters within a grid and optimized starting values. A penalty term that promotes a spatially smooth spectral parameter map is added to the fitting algorithm. This method is adaptive, in the sense that several sweeps through the grid are performed and each solution may tune some hyperparameters at run-time. Simulation studies of MRSI data showed significantly improved metabolite estimates after the inclusion of spatial information. Improved metabolite maps were also demonstrated by applying the method to in vivo MRSI data. Overlapping peaks or peaks of compounds present at low concentration can be better quantified with the proposed method than with single-voxel approaches. The new approach compares favorably against the multivoxel approach embedded in the well-known quantification software LCModel
    corecore