4 research outputs found

    Oncolytic Viruses: Do They Have a Role in Anti-Cancer Therapy?

    Get PDF
    Oncolytic viruses are replication competent, tumor selective and lyse cancer cells. Their potential for anti-cancer therapy is based upon the concept that selective intratumoral replication will produce a potent anti-tumor effect and possibly bystander or remote cell killing, whilst minimizing normal tissue toxicity. Viruses may be naturally oncolytic or be engineered for oncolytic activity, and possess a host of different mechanisms to provide tumor selectivity. Clinical use of live replicating viruses is associated with a unique set of safety issues. Clinical experience has so far provided evidence of limited efficacy and a favourable toxicity profile. The interaction with the host immune system is complex. An anti-viral immune response may limit efficacy by rapidly clearing the virus. However, virally-induced cell lysis releases tumor associated antigens in a ā€˜dangerousā€™ context, and limited evidence suggests that this can lead to the generation of a specific anti-tumor immune response. Combination therapy with chemotherapy or radiotherapy represents a promising avenue for ongoing translation of oncolytic viruses into clinical practice. Obstacles to therapy include highly effective non-specific host mechanisms to clear virus following systemic delivery, immune-mediated clearance, and intratumoral barriers limiting virus spread. A number of novel strategies are now under investigation to overcome these barriers. This review provides an overview of the potential role of oncolytic viruses, highlighting recent progress towards developing effective therapy and asks if they are a realistic therapeutic option at this stage

    Serotype chimeric and fiber-mutated adenovirus Ad5/19p-HIT for targeting renal cancer and untargeting the liver

    No full text
    Despite some advances, patients with advanced renal cell carcinoma (RCC) cannot usually be cured. Alteration of the natural tropism of adenoviruses may permit more specific gene transfer to target tissues. The aim of this study was to use novel targeting moieties for adenoviral gene therapy of RCC. Previous work in rats suggested that use of Ad5/19p (Ad5 capsid with Ad19p fiber) with kidney vascular targeting moieties HTTHREP (HTT), HITSLLS (HIT), and APASLYN (APA) placed into the fiber knob might be useful for targeting kidney vasculature. Therefore, we sought to investigate the utility of Ad5/19p variants for gene delivery to human RCC cell lines, clinical samples, and orthotopic murine models of metastatic RCC. Six different human RCC cell lines were infected but only Ad5/19p-HIT showed increased transduction, and only in one cell line. Thus, we analyzed human normal and cancerous kidney specimens fresh from patients, which might better mimic the three-dimensional architecture of clinical tumors and found that Ad5/19p-HIT showed transduction levels similar to Ad5. In mice, we found that intraperitoneal and intravenous Ad5/19p-HIT transduced tumors at levels comparable to Ad5, and that intratumoral Ad5/19p-HIT was superior to Ad5. Liver tropism was significantly reduced in comparison with Ad5. Improvements in tumor-to-liver transduction ratios suggested that Ad5/19p-HIT may be promising for systemic gene delivery to kidney tumors

    Efficacy, Toxicity, and Immunogenicity of Adenoviral Vectors

    No full text
    corecore