30 research outputs found
Heavy metals in a light white dwarf: abundances of the metal-rich, extremely low-mass GALEX J1717+6757
Using the Hubble Space Telescope, we detail the first abundance analysis enabled by farultraviolet
spectroscopy of a low-mass (0.19 M) white dwarf (WD), GALEX J1717+6757,
which is in a 5.9-h binary with a fainter, more-massive companion. We see absorption from
nine metals, including roughly solar abundances of Ca, Fe, Ti, and P. We detect a significantly
sub-solar abundance of C, and put upper limits on N and O that are also markedly sub-solar.
Updated diffusion calculations indicate that all metals should settle out of the atmosphere
of this 14 900 K, log g = 5.67 WD in the absence of radiative forces in less than 20 yr,
orders of magnitude faster than the cooling age of hundreds of Myr. We demonstrate that
ongoing accretion of rocky material that is often the cause of atmospheric metals in isolated,
more massive WDs is unlikely to explain the observed abundances in GALEX J1717+6757.
Using new radiative levitation calculations, we determine that radiative forces can counteract
diffusion and support many but not all of the elements present in the atmosphere of this WD;
radiative levitation cannot, on its own, explain all of the observed abundance patterns, and
additional mechanisms such as rotational mixing may be required. Finally, we detect both
primary and secondary eclipses using ULTRACAM high-speed photometry, which we use to
constrain the low-mass WD radius and rotation rate as well as update the ephemeris from the
discovery observations of this WD+WD binary
Soft-core baryon-baryon potentials for the complete baryon octet
SU(3) symmetry relations on the recently constructed hyperon-nucleon
potentials are used to develop potential models for all possible baryon-baryon
interaction channels. The main focus is on the interaction channels with total
strangeness S=-2, -3, and -4, for which no experimental data exist yet. The
potential models for these channels are based on SU(3) extensions of potential
models for the S=0 and S=-1 sectors, which are fitted to experimental data.
Although the SU(3) symmetry is not taken to be exact, the S=0 and S=-1 sectors
still provide the necessary constraints to fix all free parameters. The
potentials for the S=-2, -3, and -4 sectors, therefore, do not contain any
additional free parameters, which makes them the first models of this kind.
Various properties of the potentials are illustrated by giving results for
scattering lengths, bound states, and total cross sections.Comment: 22 pages RevTex, 6 postscript figure
Weak capture of protons by protons
The cross section for the proton weak capture reaction
is calculated with wave functions obtained from a number of modern, realistic
high-precision interactions. To minimize the uncertainty in the axial two-body
current operator, its matrix element has been adjusted to reproduce the
measured Gamow-Teller matrix element of tritium decay in model
calculations using trinucleon wave functions from these interactions. A
thorough analysis of the ambiguities that this procedure introduces in
evaluating the two-body current contribution to the pp capture is given. Its
inherent model dependence is in fact found to be very weak. The overlap
integral for the pp capture is predicted to be in the range
7.05--7.06, including the axial two-body current contribution, for all
interactions considered.Comment: 17 pages RevTeX (twocolumn), 5 postscript figure
Beyond the Shade of the Oak Tree: The Recent Growth of Johannine Studies
The recent growth within Johannine studies has developed as a result of several factors. First, the discovery of the Dead Sea Scrolls led to an appreciation of the Jewishness of John’s origin. Second, new approaches to John’s composition have emerged, followed by a larger set of inquiries as to the Johannine tradition’s relation to parallel traditions. This has been accompanied by a fourth interest: the history of the Johannine situation. Fifth, new literary studies have posed new horizons for interpretation, and sixth, theories continue to abound on the identity of the Beloved Disciple. A seventh development involves new ways of conceiving John’s theological features, leading to an eighth: reconsidering John’s historical features and re-envisioning its historical contributions in new perspective
An accurate nucleon-nucleon potential with charge-independence breaking
We present a new high-quality nucleon-nucleon potential with explicit charge
dependence and charge asymmetry, which we designate Argonne . The model
has a charge-independent part with fourteen operator components that is an
updated version of the Argonne potential. Three additional
charge-dependent and one charge-asymmetric operators are added, along with a
complete electromagnetic interaction. The potential has been fit directly to
the Nijmegen and scattering data base, low-energy scattering
parameters, and deuteron binding energy. With 40 adjustable parameters it gives
a per datum of 1.09 for 4301 and data in the range 0--350
MeV.Comment: 36 pages, PHY-7742-TH-9
Proxe: A public repository of xenografts to facilitate studies of biology and expedite preclinical drug development in leukemia and lymphoma.
To expedite the translation of biologic discoveries into novel therapeutics, there is a pressing need for panels of in vivo models that capture the molecular complexity of human disease. While traditional cell lines and genetically engineered mouse models are useful tools, they are insufficient to assess the broad diversity of human tumors within a context that recapitulates in situ biology. Patient-derived xenografts (PDXs), generated by transplanting primary human tumor cells into immune-deficient NOD.Cg-Prkdcscid/Il2rgtm1Wjl/SzJ (NSG) mice, surmount some of the limitations of these traditional platforms and have been increasingly utilized as tools for preclinical investigation. However, the infrastructure required to generate, bank, and characterize PDX models limits their availability to only a few investigators. To address this issue, we established a repository of PDX models of leukemia and lymphoma, which we have named the Public Repository of Xenografts (PRoXe). At the time of this writing, PRoXe contains 213 independent lines that have been passaged through mice once (P0), 123 of which have been repassaged in a second generation (P1) or further repassaged. The repository encompasses AML, B- and T-ALL, and B- and T-cell non-Hodgkin lymphoma (NHL) across a range of cytogenetic- and molecularly-defined subtypes (Table 1). PRoXe is extensively annotated with patient-level information, including demographics, phase of treatment, prior therapies, tumor immunophenotye, cytogenetics, and molecular diagnostics. PDX lines available for distribution are characterized by immunophenotyping, whole transcriptome sequencing (RNAseq), and targeted exon sequencing of ~300 genes. To confirm fidelity of engrafted tumors to their corresponding clinical samples, lymphomas were morphologically assessed in P0 mice by H&E and, when pathologic adjudication was required, by immunohistochemistry. Xenografted leukemias were compared to their original tumors immunophenotypically. Unsupervised hierarchical clustering was performed on 132 of these lines based on transcriptome sequencing data and demonstrated 94% concordance between classification of the PDX lines by RNA expression and by the annotated clinical-pathologic diagnoses. Discordant cases highlighted unusual variants, such as B-ALL with aberrant expression of myeloid markers and a follicular lymphoma that underwent blastic transformation in the mouse. Multiple lines have been luciferized and confirmed to home to bone marrow, spleen, and liver. Existing lines from PRoXe have already been shared with more than ten academic laboratories and multiple industrial partners. All of the data referenced here are freely available through a customized web-based search application at http://proxe.org, and lines can be requested for in vitro or in vivo experiments. We are actively expanding the size of PRoXe to allow for large pre-clinical studies that are powered to detect differences across genetically defined subsets. Thus, we are happy to host additional lines from outside investigators on PRoXe and thereby expand the availability of these valuable reagents. Finally, we have made the source code for PRoXe (in R Shiny) open-access, so that other investigators can establish their own portals