1,424 research outputs found
Cameras and carcasses: historical and current methods for using artificial food falls to study deep-water animals
Deep-ocean animals remain poorly understood compared to their shallow-water relatives, mainly because of the great cost and difficulty involved in obtaining reliable ecological data. This is a serious issue as exploitation of deep-water resources progresses without sufficient data being available to assess its risks and impacts. First described almost 40 years ago, the use of baited cameras was pioneered by deep-sea biologists and is now a widely used technique for the assessing patterns of animal behaviour, abundance and biodiversity. The technique provides a non-destructive and cost-effective means of collecting data, where other techniques such as trawling are difficult or impractical. This review will first describe the evolution of baited camera techniques in deep-sea research from the early deployments, through recent programs to investigate trends in animal distribution with depth, latitude, and ocean basin. In the second section the techniques used for imaging, baiting, and analysis are synthesized, with special consideration for the modeling techniques used in assessing animal abundance and biomass
Specific dose-dependent effects of ethane 1,2-dimethanesulfonate in rat and mouse Leydig cells and non-steroidogenic cells on programmed cell death
The mechanism by which ethane 1,2-dimethanesulfonate (EDS) selectively
kills Leydig cells is poorly understood. To characterize further the
cell-specific actions of EDS, we studied biochemical and morphological
changes during apoptosis in different Leydig cell and non-steroidogenic
cell models.Rat testicular and H540 tumor Leydig cells were killed by 1-2
mM EDS, whereas 20 mM EDS were required for MA-10 cells. This higher
concentration of EDS was also necessary for activation of apoptosis in
non-steroidogenic Chinese hamster ovary cells, whereas COS-1 monkey kidney
cells were resistant. These variable effects of EDS on apoptosis were
independent of new protein synthesis and, interestingly, could be delayed
by co-incubation with dibutyrl cyclic AMP. Along with cell death, we also
observed chromosomal fragmentation and other hallmarks indicative of
apoptosis as evidenced by DNA laddering and fluorescent microscopy.
Time-lapse photography with a confocal microscope showed that the time of
onset, duration and even the sequence of apoptotic events between
individual H540 cells was heterogeneous. When the dose of EDS was
gradually increased from 2 to 10 mM, the proportion of cells showing
normal apoptotic features gradually decreased. Intriguingly, treatment
with 10 mM EDS did not result in death for most cells and was marked by an
absence of DNA laddering and ultrastructural features of apoptosis and
necrosis. However, incubation with 20 mM EDS resulted in necrosis.These
results demonstrated that the effects of EDS on cell survival are not
specific to Leydig cells, that different cell types have different
sensitivities to EDS and that stimulation of the cAMP pathway may mitigate
EDS action. The data obtained with H540 cells further revealed that EDS
can induce two types of programmed cell death
Suppression of static stripe formation by next-neighbor hopping
We show from real-space Hartree-Fock calculations within the extended Hubbard
model that next-nearest neighbor (t') hopping processes act to suppress the
formation of static charge stripes. This result is confirmed by investigating
the evolution of charge-inhomogeneous corral and stripe phases with increasing
t' of both signs. We propose that large t' values in YBCO prevent static stripe
formation, while anomalously small t' in LSCO provides an additional reason for
the appearance of static stripes only in these systems.Comment: 4 pages, 5 figure
Documenting the Document: The Forensic Hospital Report and Its Knowledge Moves
Drawing on case files from a Canadian provincial review board tasked with determining the disposition of persons found ‘not criminally responsible on account of mental disorder’, we explore the role of the forensic hospital report in the production of medico-legal risk knowledges. Through a detailed case study, we show how the report's content and particular material form allow the Board to produce the ‘significantly threatening individual’ – the very thing the Board (and report) are meant to presuppose. We therefore call on scholars to document their documents, and, in the spirit of actor-network theory (ANT), to analytically treat socio-legal objects as active participants in knowledge's creation. By accounting for the ‘knowledge moves’ the hospital report might allow, encourage, or prohibit human actors to make, we hope even ANT sceptics can use these tools to better understand various legal decision-making processes and their effects
Superconductivity in the two dimensional Hubbard Model.
Quasiparticle bands of the two-dimensional Hubbard model are calculated using
the Roth two-pole approximation to the one particle Green's function. Excellent
agreement is obtained with recent Monte Carlo calculations, including an
anomalous volume of the Fermi surface near half-filling, which can possibly be
explained in terms of a breakdown of Fermi liquid theory. The calculated bands
are very flat around the (pi,0) points of the Brillouin zone in agreement with
photoemission measurements of cuprate superconductors. With doping there is a
shift in spectral weight from the upper band to the lower band. The Roth method
is extended to deal with superconductivity within a four-pole approximation
allowing electron-hole mixing. It is shown that triplet p-wave pairing never
occurs. Singlet d_{x^2-y^2}-wave pairing is strongly favoured and optimal
doping occurs when the van Hove singularity, corresponding to the flat band
part, lies at the Fermi level. Nearest neighbour antiferromagnetic correlations
play an important role in flattening the bands near the Fermi level and in
favouring superconductivity. However the mechanism for superconductivity is a
local one, in contrast to spin fluctuation exchange models. For reasonable
values of the hopping parameter the transition temperature T_c is in the range
10-100K. The optimum doping delta_c lies between 0.14 and 0.25, depending on
the ratio U/t. The gap equation has a BCS-like form and (2*Delta_{max})/(kT_c)
~ 4.Comment: REVTeX, 35 pages, including 19 PostScript figures numbered 1a to 11.
Uses epsf.sty (included). Everything in uuencoded gz-compressed .tar file,
(self-unpacking, see header). Submitted to Phys. Rev. B (24-2-95
An overview of jets and outflows in stellar mass black holes
In this book chapter, we will briefly review the current empirical
understanding of the relation between accretion state and and outflows in
accreting stellar mass black holes. The focus will be on the empirical
connections between X-ray states and relativistic (`radio') jets, although we
are now also able to draw accretion disc winds into the picture in a systematic
way. We will furthermore consider the latest attempts to measure/order jet
power, and to compare it to other (potentially) measurable quantities, most
importantly black hole spin.Comment: Accepted for publication in Space Science Reviews. Also to appear in
the Space Sciences Series of ISSI - The Physics of Accretion on to Black
Holes (Springer Publisher
Epitaxially strained [001]-(PbTiO)(PbZrO) superlattice and PbTiO from first principles
The effect of layer-by-layer heterostructuring and epitaxial strain on
lattice instabilities and related ferroelectric properties is investigated from
first principles for the [001]-(PbTiO)(PbZrO) superlattice and
pure PbTiO on a cubic substrate. The results for the superlattice show an
enhancement of the stability of the monoclinic r-phase with respect to pure
PbTiO. Analysis of the lattice instabilities of the relaxed centrosymmetric
reference structure computed within density functional perturbation theory
suggests that this results from the presence of two unstable zone-center modes,
one confined in the PbTiO layer and one in the PbZrO layer, which
produce in-plane and normal components of the polarization, respectively. The
zero-temperature dielectric response is computed and shown to be enhanced not
only near the phase boundaries, but throughout the r-phase. Analysis of the
analogous calculation for pure PbTiO is consistent with this
interpretation, and suggests useful approaches to engineering the dielectric
properties of artificially structured perovskite oxides.Comment: 8 pages, 5 figure
Self-similar Approximants of the Permeability in Heterogeneous Porous Media from Moment Equation Expansions
We use a mathematical technique, the self-similar functional renormalization,
to construct formulas for the average conductivity that apply for large
heterogeneity, based on perturbative expansions in powers of a small parameter,
usually the log-variance of the local conductivity. Using
perturbation expansions up to third order and fourth order in
obtained from the moment equation approach, we construct the general functional
dependence of the transport variables in the regime where is of
order 1 and larger than 1. Comparison with available numerical simulations give
encouraging results and show that the proposed method provides significant
improvements over available expansions.Comment: Latex, 14 pages + 5 ps figure
Ab-initio study of BaTiO3 surfaces
We have carried out first-principles total-energy calculations of (001)
surfaces of the tetragonal and cubic phases of BaTiO3. Both BaO-terminated
(type I) and TiO2-terminated (type II) surfaces are considered, and the atomic
configurations have been fully relaxed. We found no deep-gap surface states for
any of the surfaces, in agreement with previous theoretical studies. However,
the gap is reduced for the type-II surface, especially in the cubic phase. The
surface relaxation energies are found to be substantial, i.e., many times
larger than the bulk ferroelectric well depth. Nevertheless, the influence of
the surface upon the ferroelectric order parameter is modest; we find only a
small enhancement of the ferroelectricity near the surface.Comment: 8 pages, two-column style with 4 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#pad_sur
Ab initio study of ferroelectric domain walls in PbTiO3
We have investigated the atomistic structure of the 180-degree and 90-degree
domain boundaries in the ferroelectric perovskite compound PbTiO3 using a
first-principles ultrasoft-pseudopotential approach. For each case we have
computed the position, thickness and creation energy of the domain walls, and
an estimate of the barrier height for their motion has been obtained. We find
both kinds of domain walls to be very narrow with a similar width of the order
of one to two lattice constants. The energy of the 90-dergree domain wall is
calculated to be 35 mJ/m^2, about a factor of four lower than the energy of its
180-degree counterpart, and only a miniscule barrier for its motion is found.
As a surprising feature we detected a small offset of 0.15-0.2 eV in the
electrostatic potential across the 90-degree domain wall.Comment: 12 pages, with 9 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/bm_dw/index.htm
- …