6,197 research outputs found
Black hole variability and the star formation-active galactic nucleus connection : do all star-forming galaxies host an active galactic nucleus?
We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (gsim100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ~100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L AGN in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to "inactive" galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR
Comments on the Boundary Scattering Phase
We present a simple solution to the crossing equation for an open string
worldsheet reflection matrix, with boundaries preserving a SU(1|2)^2 residual
symmetry, which constrains the boundary dressing factor. In addition, we also
propose an analogous crossing equation for the dressing factor where extra
boundary degrees of freedom preserve a SU(2|2)^2 residual symmetry.Comment: 14 pages, 2 figures; v2: affiliation correcte
Secondary peak on asymmetric magnetization loop of type-II superconductors
Asymmetric magnetization loops with a second peak effect were parameterized
by the extended critical state model. The magnetic field distribution in a
sample is considered. Expression is suggested for a peak of the critical
current density and corresponding depression on field dependence of the depth
of surface layer with equilibrium magnetization. These functions determine the
width and the asymmetry of a magnetization loop. Asymmetry of the secondary
peak height on magnetization branches for increasing and decreasing field is
reproduced on the computed magnetization curves.Comment: 6 pages, 2 figures, Equation 6 is modified to be f=0 at B=
Aharonov-Anandan phase in Lipkin-Meskov-Glick model
In the system of several interacting spins, geometric phases have been
researched intensively.However, the studies are mainly focused on the adiabatic
case (Berry phase), so it is necessary for us to study the non-adiabatic
counterpart (Aharonov and Anandan phase). In this paper, we analyze both the
non-degenerate and degenerate geometric phase of Lipkin-Meskov-Glick type
model, which has many application in Bose-Einstein condensates and entanglement
theory. Furthermore, in order to calculate degenerate geometric phases, the
Floquet theorem and decomposition of operator are generalized. And the general
formula is achieved
The newly observed open-charm states in quark model
Comparing the measured properties of the newly observed open-charm states
D(2550), D(2600), D(2750), D(2760), D_{s1}(2710), D_{sJ}(2860), and
D_{sJ}(3040) with our predicted spectroscopy and strong decays in a constituent
quark model, we find that: (1) the assignment to D(2550) remains
open for its too broad width determined by experiment; (2) the D(2600) and
can be identified as the - mixtures; (3) if
the D(2760) and D(2750) are indeed the same resonance, they would be the
; otherwise, they could be assigned as the and
, respectively; (4) the could be either the
's partner or the ; and (5) both the
and interpretations for the seem likely. The
and radiative decays of these sates are also studied. Further
experimental efforts are needed to test the present quarkonium assignments for
these new open-charm states.Comment: 26 pages,7 figures, journal versio
On the Rigorous Derivation of the 3D Cubic Nonlinear Schr\"odinger Equation with A Quadratic Trap
We consider the dynamics of the 3D N-body Schr\"{o}dinger equation in the
presence of a quadratic trap. We assume the pair interaction potential is
N^{3{\beta}-1}V(N^{{\beta}}x). We justify the mean-field approximation and
offer a rigorous derivation of the 3D cubic NLS with a quadratic trap. We
establish the space-time bound conjectured by Klainerman and Machedon [30] for
{\beta} in (0,2/7] by adapting and simplifying an argument in Chen and
Pavlovi\'c [7] which solves the problem for {\beta} in (0,1/4) in the absence
of a trap.Comment: Revised according to the referee report. Accepted to appear in
Archive for Rational Mechanics and Analysi
Dressing the Giant Magnon II
We extend our earlier work by demonstrating how to construct classical string
solutions describing arbitrary superpositions of scattering and bound states of
dyonic giant magnons on S^5 using the dressing method for the SU(4)/Sp(2) coset
model. We present a particular scattering solution which generalizes solutions
found in hep-th/0607009 and hep-th/0607044 to the case of arbitrary magnon
momenta. We compute the classical time delay for the scattering of two dyonic
magnons carrying angular momenta with arbitrary relative orientation on the
S^5.Comment: 13 pages, harvma
Analytical solution of the tooling/workpiece contact interface shape during a flow forming operation
Flow forming involves complicated tooling/workpiece interactions. Purely
analytical models of the tool contact area are difficult to formulate,
resulting in numerical approaches that are case-specific. Provided are the
details of an analytical model that describes the steady-state
tooling/workpiece contact area allowing for easy modification of the dominant
geometric variables. The assumptions made in formulating this analytical model
are validated with experimental results attained from physical modelling. The
analysis procedure can be extended to other rotary forming operations such as
metal spinning, shear forming, thread rolling and crankshaft fillet rolling.Comment: 28 pages, 11 figure
Quantum Phase Transition of Spin-2 Cold Bosons in an Optical Lattice
The Bose-Hubbard Hamiltonian of spin-2 cold bosons with repulsive interaction
in an optical lattice is proposed. After neglecting the hopping term, the
site-independent Hamiltonian and its energy eigenvalues and eigenstates are
obtained. We consider the hopping term as a perturbation to do the calculations
in second order and draw the phase diagrams for different cases. The phase
diagrams show that there is a phase transition from Mott insulator with integer
number bosons to superfluid when the ratio ( is the
spin-independent on-site interaction and the hopping matrix element between
adjacent lattice sites) is decreased to a critical value and that there is
different phase boundary between superfluid and Mott insulator phase for
different Zeeman level component in some ground states. We find that the
position of phase boundary for different Zeeman level component is related to
its average population in the Mott ground state.Comment: 16 pages, 6 figure
A New and Elementary CP^n Dyonic Magnon
We show that the dressing transformation method produces a new type of dyonic
CP^n magnon in terms of which all the other known solutions are either
composites or arise as special limits. In particular, this includes the
embedding of Dorey's dyonic magnon via an RP^3 subspace of CP^n. We also show
how to generate Dorey's dyonic magnon directly in the S^n sigma model via the
dressing method without resorting to the isomorphism with the SU(2) principle
chiral model when n=3. The new dyon is shown to be either a charged dyon or
topological kink of the related symmetric-space sine-Gordon theories associated
to CP^n and in this sense is a direct generalization of the soliton of the
complex sine-Gordon theory.Comment: 21 pages, JHEP3, typos correcte
- …
