6,197 research outputs found

    Black hole variability and the star formation-active galactic nucleus connection : do all star-forming galaxies host an active galactic nucleus?

    Get PDF
    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (gsim100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ~100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L AGN in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to "inactive" galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR

    Comments on the Boundary Scattering Phase

    Full text link
    We present a simple solution to the crossing equation for an open string worldsheet reflection matrix, with boundaries preserving a SU(1|2)^2 residual symmetry, which constrains the boundary dressing factor. In addition, we also propose an analogous crossing equation for the dressing factor where extra boundary degrees of freedom preserve a SU(2|2)^2 residual symmetry.Comment: 14 pages, 2 figures; v2: affiliation correcte

    Secondary peak on asymmetric magnetization loop of type-II superconductors

    Full text link
    Asymmetric magnetization loops with a second peak effect were parameterized by the extended critical state model. The magnetic field distribution in a sample is considered. Expression is suggested for a peak of the critical current density and corresponding depression on field dependence of the depth of surface layer with equilibrium magnetization. These functions determine the width and the asymmetry of a magnetization loop. Asymmetry of the secondary peak height on magnetization branches for increasing and decreasing field is reproduced on the computed magnetization curves.Comment: 6 pages, 2 figures, Equation 6 is modified to be f=0 at B=

    Aharonov-Anandan phase in Lipkin-Meskov-Glick model

    Full text link
    In the system of several interacting spins, geometric phases have been researched intensively.However, the studies are mainly focused on the adiabatic case (Berry phase), so it is necessary for us to study the non-adiabatic counterpart (Aharonov and Anandan phase). In this paper, we analyze both the non-degenerate and degenerate geometric phase of Lipkin-Meskov-Glick type model, which has many application in Bose-Einstein condensates and entanglement theory. Furthermore, in order to calculate degenerate geometric phases, the Floquet theorem and decomposition of operator are generalized. And the general formula is achieved

    The newly observed open-charm states in quark model

    Full text link
    Comparing the measured properties of the newly observed open-charm states D(2550), D(2600), D(2750), D(2760), D_{s1}(2710), D_{sJ}(2860), and D_{sJ}(3040) with our predicted spectroscopy and strong decays in a constituent quark model, we find that: (1) the D(21S0)D(2\,^1S_0) assignment to D(2550) remains open for its too broad width determined by experiment; (2) the D(2600) and Ds1(2710)D_{s1}(2710) can be identified as the 23S12\,^3S_1-13D11\,^3D_1 mixtures; (3) if the D(2760) and D(2750) are indeed the same resonance, they would be the D(13D3)D(1\,^3D_3); otherwise, they could be assigned as the D(13D3)D(1\,^3D_3) and D2(1D)D^\prime_2(1D), respectively; (4) the DsJ(2860)D_{sJ}(2860) could be either the Ds1(2710)D_{s1}(2710)'s partner or the Ds(13D3)D_s(1\,^3D_3); and (5) both the Ds1(2P)D_{s1}(2P) and Ds1(2P)D^\prime_{s1}(2P) interpretations for the DsJ(3040)D_{sJ}(3040) seem likely. The E1E1 and M1M1 radiative decays of these sates are also studied. Further experimental efforts are needed to test the present quarkonium assignments for these new open-charm states.Comment: 26 pages,7 figures, journal versio

    On the Rigorous Derivation of the 3D Cubic Nonlinear Schr\"odinger Equation with A Quadratic Trap

    Full text link
    We consider the dynamics of the 3D N-body Schr\"{o}dinger equation in the presence of a quadratic trap. We assume the pair interaction potential is N^{3{\beta}-1}V(N^{{\beta}}x). We justify the mean-field approximation and offer a rigorous derivation of the 3D cubic NLS with a quadratic trap. We establish the space-time bound conjectured by Klainerman and Machedon [30] for {\beta} in (0,2/7] by adapting and simplifying an argument in Chen and Pavlovi\'c [7] which solves the problem for {\beta} in (0,1/4) in the absence of a trap.Comment: Revised according to the referee report. Accepted to appear in Archive for Rational Mechanics and Analysi

    Dressing the Giant Magnon II

    Get PDF
    We extend our earlier work by demonstrating how to construct classical string solutions describing arbitrary superpositions of scattering and bound states of dyonic giant magnons on S^5 using the dressing method for the SU(4)/Sp(2) coset model. We present a particular scattering solution which generalizes solutions found in hep-th/0607009 and hep-th/0607044 to the case of arbitrary magnon momenta. We compute the classical time delay for the scattering of two dyonic magnons carrying angular momenta with arbitrary relative orientation on the S^5.Comment: 13 pages, harvma

    Analytical solution of the tooling/workpiece contact interface shape during a flow forming operation

    Full text link
    Flow forming involves complicated tooling/workpiece interactions. Purely analytical models of the tool contact area are difficult to formulate, resulting in numerical approaches that are case-specific. Provided are the details of an analytical model that describes the steady-state tooling/workpiece contact area allowing for easy modification of the dominant geometric variables. The assumptions made in formulating this analytical model are validated with experimental results attained from physical modelling. The analysis procedure can be extended to other rotary forming operations such as metal spinning, shear forming, thread rolling and crankshaft fillet rolling.Comment: 28 pages, 11 figure

    Quantum Phase Transition of Spin-2 Cold Bosons in an Optical Lattice

    Full text link
    The Bose-Hubbard Hamiltonian of spin-2 cold bosons with repulsive interaction in an optical lattice is proposed. After neglecting the hopping term, the site-independent Hamiltonian and its energy eigenvalues and eigenstates are obtained. We consider the hopping term as a perturbation to do the calculations in second order and draw the phase diagrams for different cases. The phase diagrams show that there is a phase transition from Mott insulator with integer number bosons to superfluid when the ratio c0/tc_0/t (c0c_0 is the spin-independent on-site interaction and tt the hopping matrix element between adjacent lattice sites) is decreased to a critical value and that there is different phase boundary between superfluid and Mott insulator phase for different Zeeman level component in some ground states. We find that the position of phase boundary for different Zeeman level component is related to its average population in the Mott ground state.Comment: 16 pages, 6 figure

    A New and Elementary CP^n Dyonic Magnon

    Full text link
    We show that the dressing transformation method produces a new type of dyonic CP^n magnon in terms of which all the other known solutions are either composites or arise as special limits. In particular, this includes the embedding of Dorey's dyonic magnon via an RP^3 subspace of CP^n. We also show how to generate Dorey's dyonic magnon directly in the S^n sigma model via the dressing method without resorting to the isomorphism with the SU(2) principle chiral model when n=3. The new dyon is shown to be either a charged dyon or topological kink of the related symmetric-space sine-Gordon theories associated to CP^n and in this sense is a direct generalization of the soliton of the complex sine-Gordon theory.Comment: 21 pages, JHEP3, typos correcte
    corecore