2,764 research outputs found

    Furrow irrigation erosion and its control

    Get PDF
    Furrow erosion was recognized as a serious problem damaging cropland 40 years ago (Israelson et al., 1946), and attempts to quantify soil loss in relation to furrow stream size and slope were made then and in the following few years (Gardner and Lauritzen, 1946; Mech, 1959). However, little attention was given to these studies, and the furrow erosion problem continued without much effort to correct it for another 25 years. In the early 1970's water quality legislation was directed towards reducing sediment, nutrients and biocides in irrigation return flows. As scientists began to develop methods to improve the quality of irrigation return flows in response to this legislation, some questions were raised about the sources of these pollutants. Brown et el., (1974), and Carter at al., (1974) reported sediment and phosphorus inflows, outflows, and balances for two large irrigation tracts in south central Idaho. They found large quantities of sediment and associated phosphorus were being lost from many irrigated fields. Research has progressed during the life of the STEEP project, and much new information about erosion and sediment loss has been reported both at Kimberly, Idaho, and Prosser, Washington. This paper is a summary of the progress made towards understanding and controlling irrigation erosion and sediment loss

    Furrow Irrigation Erosion and Its Control

    Get PDF
    Furrow erosion was recognized as a serious problem damaging cropland 40 years ago (Israelson et al., 1946), and attempts to quantify soil loss in relation to furrow stream size and slope were made then and in the following few years (Gardner and Lauritzen, 1946; Mach, 1959). However, little attention was given to these studies, and the furrow erosion problem continued without much effort to correct it for another 25 years. In the early 1970's water quality legislation was directed towards reducing sediment, nutrients and biocides in irrigation return flows. As scientists began to develop methods to improve the quality of irrigation return flows in response to this legislation, some questions were raised about the sources of these pollutants. Brown et al., (1974), and Carter et al., (1974) reported sediment and phosphorus inflows, outflows, and balances for two large irrigation tracts in south central Idaho. They found large quantities of sediment and associated phosphorus were being lost from many irrigated fields. Research has progressed during the life of the STEEP project, and much new information about erosion and sediment loss has been reported both at Kimberly, Idaho, and Prosser, Washington. This paper is a summary of the progress made towards understanding and controlling irrigation erosion and sediment loss

    Soil microbial organic nitrogen uptake is regulated by carbon availability

    Get PDF
    AbstractPlants and microorganisms intensely compete for nitrogen (N) at many stages of the terrestrial N cycle. In particular, the dissolved organic N (DON) pool, and competition for low molecular weight dissolved organic N (LMWDON) compounds such as amino acids and peptides (and LMW dissolved organic matter; LMWDOM as a whole) has received significant recent research interest. However, as LMWDON compounds contain both N and carbon (C), a question that remains is whether soil microorganisms are primarily taking up LMWDON mainly for the C or the N contained therein. We investigated microbial uptake rates of the model peptide l-trialanine as a rapidly cycling LMWDON compound in temperate grassland soils of differing fertility using 14C labelling to assess how soil fertility status influenced microbial uptake of LMWDON. We then imposed an excess of C as glucose and/or N as NH4Cl to ask whether the uptake of the peptide was affected by C or N excess. Our results demonstrate that l-trialanine is taken up rapidly from the soil solution (t½ < 1.5 min), and that an excess of C, rather than N, resulted in a reduced uptake of the peptide. From this, we conclude that LMWDON is taken up primarily to fulfil the C requirement of soil microorganisms, indicating that they exist in a C-limited state, and are able to respond quickly to a transient influx of an easily metabolisable resource

    The Construction of Double-Ended Classical Trajectories

    Full text link
    In the present paper we describe relaxation methods for constructing double-ended classical trajectories. We illustrate our approach with an application to a model anharmonic system, the Henon-Heiles problem. Trajectories for this model exhibit a number of interesting energy-time relationships that appear to be of general use in characterizing the dynamics.Comment: (12 pages, submitted to Chemical Physics Letters. Figures are too large for convenient e-mail access. they are available via anonymous ftp on willie.chem.brown.edu and reside in the directory pub/chem-ph/9407 as the compressed tar file 9407001.tar.Z. If you have difficulty retrieving the figures, please contact J. Doll ([email protected]) for assistance

    CHANDRA Observations of X-ray Jet Structure on kpc to Mpc Scales

    Full text link
    With its exquisite spatial resolution of better than 0.5 arcsecond, the Chandra observatory is uniquely capable of resolving and studying the spatial structure of extragalactic X-ray jets on scales of a few to a few hundred kilo-parsec. Our analyses of four recent Chandra images of quasar jets interpret the X-ray emission as inverse Compton scattering of high energy electrons on the cosmic microwave background. We infer that these jets are in bulk relativistic motion, carrying kinetic powers upwards of 10^46 ergs/s to distances of hundreds of kpc, with very high efficiency.Comment: 4 pages, 3 figures, to be published in the proceedings of the Bologna jet workshop, "The Physics of Relativistic Jets in the CHANDRA and XMM Era.

    Summary of International Transport Energy Modeling Workshop

    Get PDF
    The NextSTEPS program at ITS-Davis convened a one-day workshop on international transportation energy modeling (iTEM), focused on comparing the frameworks and scenario projections from four major global transport models: -- Global Change Assessment Model (GCAM) by Pacific Northwest National Laboratory (PNNL) and ITS-Davis, -- MESSAGE-Transport (Model for Energy Supply Strategy Alternatives and their General Environmental Impact) by the International Institute for Applied Systems Analysis (IIASA), -- Mobility Model (MoMo) by the International Energy Agency, and -- Roadmap by the International Council on Clean Transportation (ICCT). Highlights: -- Projections of "baseline" global transportation energy use rise from 98 EJ in 2010 to 160-250 EJ by 2050. -- There are considerable differences in historical data for some modes, both globally and for individual countries (particularly non-OECD countries). Variability in estimates of transportation activity are in most cases much larger than energy differences. -- Global average vehicle ownership rates are projected to range from 270 to 450 per 1,000 people by 2050 with wide ranges across countries: 700-1,075 for the US by the middle of the century (US is around 700 today), 100-650 for China, and 80-380 for India across four models. -- All models rely mainly on GDP to estimate the future demand for freight and hold the base year modal shares (e.g. truck v. rail) roughly constant through 2050. In reality, future evolution will depend on characteristics of products (e.g. type of commodities) being shipped, technologies available for freight and their efficiencies, and policies and infrastructure. -- Current policy commitments toward EVs, PHEVs and H2FCVs (and thus baseline projections) maybe below the numbers suggested by iTEM models as required for meeting climate targets (e.g., 2 degrees C). -- Improvements in data quality and the representation of car ownership and use across the models were identified as priorities. Modeling transport energy use can either be done by estimating how far people travel and what mode of transportation they choose or by estimating how many vehicles there are and how far each one travels. These are complementary approaches, and in theory they should both lead to the same answer. The former approach, used in "service demand" models, seem more intuitive when one wants to model societal shifts in modes of transportation, either in emerging economies as they develop or in developed economies as they decarbonize; but collecting data on service demand is notoriously difficult. In contrast, vehicle stock models use readily-available vehicle sales data, but are harder to use in future-state, what-if scenarios (particularly in estimating modal shift behaviors) and thus require special attention by experts. The four iTEM models are different in terms of scope (GCAM and MESSAGE cover all sectors of the energy system vs. MoMo and Roadmap which cover transportation only) and model structure (GCAM and MESSAGE rely on internal drivers, particularly the costs of technology and travel, to project future changes whereas MoMo and Roadmap rely on experts' judgments and detailed analysis of technology and policies to drive long-term changes). Yet, owing to these differences, the models are highly complementary and in some cases can be used jointly to answer questions that no single model can tackle on its own. The following summary shares some of the comparisons and findings from the workshop

    Distribution of epicenters in the Olami-Feder-Christensen model

    Full text link
    We show that the well established Olami-Feder-Christensen (OFC) model for the dynamics of earthquakes is able to reproduce a new striking property of real earthquake data. Recently, it has been pointed out by Abe and Suzuki that the epicenters of earthquakes could be connected in order to generate a graph, with properties of a scale-free network of the Barabasi-Albert type. However, only the non conservative version of the Olami-Feder-Christensen model is able to reproduce this behavior. The conservative version, instead, behaves like a random graph. Besides indicating the robustness of the model to describe earthquake dynamics, those findings reinforce that conservative and non conservative versions of the OFC model are qualitatively different. Also, we propose a completely new dynamical mechanism that, even without an explicit rule of preferential attachment, generates a free scale network. The preferential attachment is in this case a ``by-product'' of the long term correlations associated with the self-organized critical state. The detailed study of the properties of this network can reveal new aspects of the dynamics of the OFC model, contributing to the understanding of self-organized criticality in non conserving models.Comment: 7 pages, 7 figure
    • …
    corecore