4 research outputs found

    Point-contact spectroscopy of the borocarbide superconductor YNi2B2C

    Full text link
    Point-contact (PC) spectroscopy measurements on YNi2B2C single crystals in the normal and superconducting (SC) state (T_c=15.4K) for the main crystallographic directions are reported. The PC study reveals the electron-phonon interaction (EPI) function with a dominant maximum around 12meV and a further weak structure (kink or shallow broad maximum) at higher energy at about 50meV. Other phonon maxima at 20, 24 and 32meV specified in the phonon DOS of YNi2B2C by neutron measurements [PRB, V.55, 9058 (1997)] are not resolved in the PC spectra pointing out to the main role of the low energy phonon modes in EPI. Directional study of the SC gap results in \Delta_[100]=1.5meV for the a- direction and \Delta_[001]=2.4meV along the c-axis which may point to anisotropic and/or multiband behavior. Noteworthy, the critical temperature T_c in all cases corresponds to that of bulk samples. The value 2\Delta_[001]/kT_c=3.6 is close to the BCS one of 3.52, and the temperature dependence \Delta(T) is BCS-like, while for the a-direction \Delta(T) deviates from mean-field BCS behavior above T_c/2. The directional variation in \Delta can be attributed to the multiband nature of the SC state in YNi2B2C predicted 10 years ago (PRL, V.80, 1730 (1998)).Comment: 3 figs, 2 pages, presented on M2S-HTSC Conference, July 9-14, 2006, Dresde

    Subsurface Oxygen on Pt(111) and Its Reactivity for CO Oxidation

    Get PDF
    Catalysis and Surface Chemistr

    Point-contact spectroscopy of the nickel borocarbide superconductor YNi2B2C in the normal and superconducting state

    Full text link
    Point-contact (PC) spectroscopy measurements of YNi2B2C single crystals in the normal and superconducting (SC) state (T_c=15.4K) for the main crystallographic directions are reported. The PC study reveals the electron-phonon interaction (EPI) spectral function with dominant phonon maximum around 12 meV and further weak structures (hump or kink) at higher energy at about 50 meV. No "soft" modes below 12 meV are resolved in the normal state. The PC EPI spectra are qualitatively similar for the different directions. Contrary, directional study of the SC gap results in \Delta_[100]=1.5 meV for the a direction and \Delta_[001]=2.3 meV along the c axis; however the critical temperature T_c in PC in all cases is near to that in the bulk sample. The value 2\Delta_[001]/kT_c=3.6 is close to the BCS value of 3.52, and the temperature dependence \Delta_[001](T) is BCS-like, while the for small gap \Delta_[100](T) is below BCS behavior at T>T_c/2 similarly as in the two-gap superconductor MgB2. It is supposed that the directional variation \Delta can be attributed to a multiband nature of the SC state in YNi2B2C.Comment: 9 pages, 10 figures, to be published in a special issue of J. Low Temp. Phys. in honour of Prof. H. von Loehneyse

    It's not just the defects : a curved crystal study of H2O desorption from Ag

    No full text
    Catalysis and Surface Chemistr
    corecore