230 research outputs found

    Asymmetric apodization for the comma aberrated point spread function

    Get PDF
    This paper deals with the study of light flux distributions in the point spread function formed by an optical system with a one-dimensional aperture under the influence of the coma aberration. The traditional design of an asymmetric optical filter improves the resolution of a diffraction-limited optical imaging system. In this approach we explore the control of monochromatic aberrations through pupil engineering with asymmetric apodization. This technique employs the amplitude and phase apodization for the mitigation of the effects of third-order aberrations on the diffracted image. On introducing the coma wave aberration effect, the central peak intensity in the field of diffraction is a function of the edge strips width and the amplitude apodization parameter of a one-dimensional pupil filter, whereas the magnitude of the reduction of optical side-lobes is a function of the degree of phase apodization at the periphery of the aperture. The analytically computed results are illustrated graphically in terms of point spread function curves under various considerations of the coma aberrations and a different degree of amplitude and phase apodization. Hence, for the optimum values of apodization, the axial resolution has been analyzed using well-defined quality criteria.This work was partially financially supported by Ministry of Education and Science of Russian Federation and Russian Foundation for Basic Research (RFBR) (16-29-11698, 16-29-11744)

    Neutrino processes in the K0K^0 condensed phase of color flavor locked quark matter

    Full text link
    We study weak interactions involving Goldstone bosons in the neutral kaon condensed phase of color flavor locked quark matter. We calculate the rates for the dominant processes that contribute to the neutrino mean free p ath and to neutrino production. A light K+K^+ state, with a mass m~K+(Δ/μ)(Δ/ms)(mdmu)\tilde{m}_{K^+} \propto (\Delta/\mu) (\Delta/m_s)(m_d-m_u), where μ\mu and Δ\Delta are the quark chemical potential and superconducting gap respectively, is shown to play an important role. We identify unique characteristics of weak interaction rates in this novel phase and discuss how they might influence neutrino emission in core collapse supernova and neutron stars.Comment: 21 pages, 4 figure

    Primary double tooth with partial anodontia of permanent dentition: a case report

    Get PDF
    Dental anomalies of number and forms may occur in the primary and permanent dentition. Various terms have been used to describe dental twinning anomalies: gemination, fusion, concrescence, double teeth, cojoined teeth, twinned teeth, geminifusion and vicinifusion. Double tooth is a term used to describe connate tooth and includes both dental fusion and gemination. The phenomenon of gemination occurs when two teeth develop from one single bud leading to a larger tooth. Fusion is a condition in which the crowns of two separate teeth have been joined toge- ther during the crown development. Fusion occurs infrequently but could cause esthetic, spacing and periodontal problems. The present article highlights the presence of a primary double tooth in an 11 year old boy involving primary mandibular left lateral incisor and canine. Clinical examination and radiographic examination confirmed the absence of the permanent left mandibular lateral incisor. Cases with primary double tooth necessitate careful examination as they may be associated with anomalies in the succeeding permanent dentition and require proper treatment plannin

    Scalar-isoscalar excitation in dense quark matter

    Get PDF
    We study the spectrum of scalar-isoscalar excitations in the color-flavor locked phase of dense quark matter. The sigma meson in this phase appears as a four-quark state (of diquark and anti-diquark) with a well-defined mass and extremely small width, as a consequence of it's small coupling to two pions. The quark particle/hole degrees of freedom also contribute significantly to the correlator just above the threshold 2\Delta where \Delta is the superconducting gap.Comment: RevTeX, 11 pages, 4 fig

    Gravitational field of domain wall in Lyra geometry

    Full text link
    In this paper, we study the domain wall with time dependent displacement vectors based on Lyra geometry in normal gauge i.e. displacement vector fi=[β(t),0,0,0]f^*_i = [ \beta (t), 0,0,0]. The field theoretic energy momentum tensor is considered with zero pressure perpendicular to the wall. We find an exact solutions of Einstein equation for a scalar field ϕ\phi with a potential V(ϕ)V(\phi) describing the gravitational field of a plane symmetric domain wall. We have seen that the hyper surfaces parallel to the wall (z=constant z = constant ) are three dimensional de-sitter spaces. It is also shown that the gravitational field experienced by test particle is attractive.Comment: 11 pages, 6 figures; Submitted in Astrophysics and Space Science after minor revisio

    Vacuumless topological defects in Lyra geometry

    Full text link
    Few years ago, Cho and Vilenkin have proposed that topological defects can arise in symmetry breaking models without having degenerate vacua. These types of defects are known as vacuumless defects. In the present work, the gravitational field of a vacuumless global string and global monopole have been investigated in the context of Lyra geometry. We find the metric of the vacuumless global string and global monopole in the weak field approximations. It has been shown that the vacuumless global string can have repulsive whereas global monopole exerts attractive gravitational effects on a test particle. It is dissimilar to the case studied in general relativity.Comment: 14 pages, 9 figures. To appear in Astrophys.Space.Sc

    Optically opaque color-flavor locked phase inside compact stars

    Get PDF
    The contribution of thermally excited electron-positron pairs to the bulk properties of the color-flavor locked quark phase inside compact stars is examined. The presence of these pairs causes the photon mean free path to be much smaller than a typical core radius (R01R_0 \simeq 1 km) for all temperatures above 25 keV so that the photon contribution to the thermal conductivity is much smaller than that of the Nambu-Goldstone bosons. We also find that the electrons and positrons dominate the electrical conductivity, while their contributions to the total thermal energy is negligible.Comment: 3 pages, 2 figures. Published versio

    Two lectures on color superconductivity

    Full text link
    The first lecture provides an introduction to the physics of color superconductivity in cold dense quark matter. The main color superconducting phases are briefly described and their properties are listed. The second lecture covers recent developments in studies of color superconducting phases in neutral and beta-equilibrated matter. The properties of gapless color superconducting phases are discussed.Comment: 56 pages, 9 figures. Minor corrections and references added. Lectures delivered at the IARD 2004 conference, Saas Fee, Switzerland, June 12 - 19, 2004, and at the Helmholtz International Summer School and Workshop on Hot points in Astrophysics and Cosmology, JINR, Dubna, Russia, August 2 - 13, 200

    Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands.

    Get PDF
    Alloimmune T cell responses induce graft-versus-host disease (GVHD), a serious complication of allogeneic bone marrow transplantation (allo-BMT). Although Notch signaling mediated by Delta-like 1/4 (DLL1/4) Notch ligands has emerged as a major regulator of GVHD pathogenesis, little is known about the timing of essential Notch signals and the cellular source of Notch ligands after allo-BMT. Here, we have shown that critical DLL1/4-mediated Notch signals are delivered to donor T cells during a short 48-hour window after transplantation in a mouse allo-BMT model. Stromal, but not hematopoietic, cells were the essential source of Notch ligands during in vivo priming of alloreactive T cells. GVHD could be prevented by selective inactivation of Dll1 and Dll4 in subsets of fibroblastic stromal cells that were derived from chemokine Ccl19-expressing host cells, including fibroblastic reticular cells and follicular dendritic cells. However, neither T cell recruitment into secondary lymphoid organs nor initial T cell activation was affected by Dll1/4 loss. Thus, we have uncovered a pathogenic function for fibroblastic stromal cells in alloimmune reactivity that can be dissociated from their homeostatic functions. Our results reveal what we believe to be a previously unrecognized Notch-mediated immunopathogenic role for stromal cell niches in secondary lymphoid organs after allo-BMT and define a framework of early cellular and molecular interactions that regulate T cell alloimmunity

    Accelerating Bianchi Type-V Cosmology with Perfect Fluid and Heat Flow in Saez-Ballester Theory

    Full text link
    In this paper we discuss the law of variation of scale factor a=(tket)1na = (t^{k}e^{t})^{\frac{1}{n}} which yields a time-dependent deceleration parameter (DP) representing a new class of models that generate a transition of universe from the early decelerated phase to the recent accelerating phase. Exact solutions of Einstein's modified field equations with perfect fluid and heat conduction are obtained within the framework of Saez-Ballester scalar-tensor theory of gravitation and the model is found to be in good agreement with recent observations. We find, for n = 3, k = 1, the present value of DP in derived model as q_0 = -0.67 which is very near to the observed value of DP at present epoch. We find that the time-dependent DP is sensible for the present day Universe and give an earmark description of evolution of universe. Some physical and geometric properties of the models are also discussed.Comment: 12 pages, 5 figure
    corecore