1,033 research outputs found

    Debye screening and Meissner effect in a two-flavor color superconductor

    Full text link
    I compute the gluon self-energy in a color superconductor with two flavors of massless quarks, where condensation of Cooper pairs breaks SU(3)_c to SU(2)_c. At zero temperature, there is neither Debye screening nor a Meissner effect for the three gluons of the unbroken SU(2)_c subgroup. The remaining five gluons attain an electric as well as a magnetic mass. For temperatures approaching the critical temperature for the onset of color superconductivity, or for gluon momenta much larger than the color-superconducting gap, the self-energy assumes the form given by the standard hard-dense loop approximation. The gluon self-energy determines the coefficient of the kinetic term in the effective low-energy theory for the condensate fields.Comment: 29 pages, RevTe

    A geological model of the chalk of East Kent

    Get PDF
    This report describes the geological modelling of the Chalk in the North Downs of East Kent, within the catchment of River Great Stour and eastwards to the coast, including the Isle of Thanet. This work was funded by the Environment Agency to support investigations of the local hydrogeology and thereby to enhance catchment management. The whole area is underlain by the Upper Cretaceous Chalk Group, with the Palaeogene succession of the Thanet Sand Formation, the Lambeth Group and the Thames Group overlying it in the northern and central eastern parts. The project included a desk study revision of the Chalk of the North Downs, using the new Chalk lithostratigraphy. The revisions to the geology are shown on the 1:50 000 scale geological map which accompanies this report. Together with evidence from boreholes and from seismic surveys, the new outcrop patterns have been incorporated into a geological model, using both computer software (EarthVision) and manual methods. The introduction describes the background to the project. The second chapter describes the sources for the data used in the model: published and unpublished geological maps, borehole records (both lithological and geophysical), seismic surveys, biostratigraphic records, digital topographic information, and the published literature. Each Chalk formation present in the area is then briefly described in the third chapter, noting its relationship to the older lithostratigraphic divisions, and to biostratigraphic zones. The local Chalk succession extends from the base of the Chalk Group to the Newhaven Chalk Formation, here represented by the Margate Chalk Member. Evidence for the thickness of each formation is reviewed. The early Palaeogene formations (the Thanet Sand, Upnor, Harwich and London Clay formations) are also briefly described (Chapter 4) and the local superficial deposits mentioned, with references to detailed descriptions (Chapter 5). Apart from minor adjustments to the outcrop of the basal Palaeogene surface, no revision of these formations was done for this study

    Fluid-membrane tethers: minimal surfaces and elastic boundary layers

    Full text link
    Thin cylindrical tethers are common lipid bilayer membrane structures, arising in situations ranging from micromanipulation experiments on artificial vesicles to the dynamic structure of the Golgi apparatus. We study the shape and formation of a tether in terms of the classical soap-film problem, which is applied to the case of a membrane disk under tension subject to a point force. A tether forms from the elastic boundary layer near the point of application of the force, for sufficiently large displacement. Analytic results for various aspects of the membrane shape are given.Comment: 12 page

    Scalar-isoscalar excitation in dense quark matter

    Get PDF
    We study the spectrum of scalar-isoscalar excitations in the color-flavor locked phase of dense quark matter. The sigma meson in this phase appears as a four-quark state (of diquark and anti-diquark) with a well-defined mass and extremely small width, as a consequence of it's small coupling to two pions. The quark particle/hole degrees of freedom also contribute significantly to the correlator just above the threshold 2\Delta where \Delta is the superconducting gap.Comment: RevTeX, 11 pages, 4 fig

    Low Energy Theory for 2 flavors at High Density QCD

    Get PDF
    We construct the effective Lagrangian describing the low energy excitations for Quantum Chromodynamics with two flavors at high density. The non-linear realization framework is employed to properly construct the low energy effective theory. The light degrees of freedom, as required by 't Hooft anomaly conditions, contain massless fermions which we properly include in the effective Lagrangian. We also provide a discussion of the linearly realized Lagrangian.Comment: 17 pages, RevTeX format, references added. To appear in Phys. Rev.

    Gluon self-energy in a two-flavor color superconductor

    Get PDF
    The energy and momentum dependence of the gluon self-energy is investigated in a color superconductor with two flavors of massless quarks. The presence of a color-superconducting quark-quark condensate modifies the gluon self-energy for energies which are of the order of the gap parameter. For gluon energies much larger than the gap, the self-energy assumes the form given by the standard hard-dense loop approximation. It is shown that this modification of the gluon self-energy does not affect the magnitude of the gap to leading and subleading order in the weak-coupling limit.Comment: 21 pages, 6 figures, RevTeX, aps and epsfig style files require

    Charge Neutrality of the Color-Flavor Locked Phase from the Low Energy Effective Theory

    Full text link
    We investigate the issue of charge neutrality of the CFLK0K^0 phase of dense quark matter using the low energy effective theory of high density QCD. We show that the local electric and color charge neutrality of the ground state in a homogeneous color superconducting medium follows from its dynamics. We also consider the situation of a spatially inhomogeneous medium, such as may be found in a neutron star core. We find that spatial inhomogeneity results in the generation of electric fields, and positrons/electrons may be present in the ground state. We estimate the concentration of charged leptons in the ground state to be ne102cm3n_{e}\sim{10^2}{cm}^{-3} and consider their influence on the opacity of the medium with respect to the modified photons.Comment: typos corrected, this version to appear in PR

    Instanton Effects in QCD at High Baryon Density

    Get PDF
    We study instanton effects in QCD at very high baryon density. In this regime instantons are suppressed by a large power of (ΛQCD/μ)(\Lambda_{QCD}/\mu), where ΛQCD\Lambda_{QCD} is the QCD scale parameter and μ\mu is the baryon chemical potential. Instantons are nevertheless important because they contribute to several physical observables that vanish to all orders in perturbative QCD. We study, in particular, the chiral condensate and its contribution mGB2mm_{GB}^2\sim m to the masses of Goldstone bosons in the CFL phase of QCD with Nf=3N_f=3 flavors. We find that at densities ρ(510)ρ0\rho\sim (5-10) \rho_0, where ρ0\rho_0 is the density of nuclear matter, the result is dominated by large instantons and subject to considerable uncertainties. We suggest that these uncertainties can be addressed using lattice calculations of the instanton density and the pseudoscalar diquark mass in QCD with two colors. We study the topological susceptibility and Witten-Veneziano type mass relations in both Nc=2N_c=2 and Nc=3N_c=3 QCD.Comment: 27 pages, 8 figures, minor revision

    Cold Nuclear Matter In Holographic QCD

    Full text link
    We study the Sakai-Sugimoto model of holographic QCD at zero temperature and finite chemical potential. We find that as the baryon chemical potential is increased above a critical value, there is a phase transition to a nuclear matter phase characterized by a condensate of instantons on the probe D-branes in the string theory dual. As a result of electrostatic interactions between the instantons, this condensate expands towards the UV when the chemical potential is increased, giving a holographic version of the expansion of the Fermi surface. We argue based on properties of instantons that the nuclear matter phase is necessarily inhomogeneous to arbitrarily high density. This suggests an explanation of the "chiral density wave" instability of the quark Fermi surface in large N_c QCD at asymptotically large chemical potential. We study properties of the nuclear matter phase as a function of chemical potential beyond the transition and argue in particular that the model can be used to make a semi-quantitative prediction of the binding energy per nucleon for nuclear matter in ordinary QCD.Comment: 31 pages, LaTeX, 1 figure, v2: some formulae corrected, qualitative results unchange

    The abolition of the General Teaching Council for England and the future of teacher discipline

    Get PDF
    With the abolition of the General Teaching Council for England in the 2011 Education Act, this article considers the future of teacher discipline in England. It provides a critique of the changes to the regulation of teacher misconduct and incompetence that draws on a Foucauldian framework, especially concerning the issue of public displays of discipline and the concomitant movement to more hidden forms. In addition, the external context of accountability that accompanies the reforms to teacher discipline are considered including the perfection of the panoptic metaphor presented by the changes to Ofsted practices such as the introduction of zero-notice inspections. The article concludes that the reforms will further move teachers from being occupational professionals to being organisational professionals marking them apart from comparable professions in medicine and law
    corecore