2 research outputs found

    Quantum Iterated Function Systems

    Full text link
    Iterated functions system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on an initial point. In an analogous way, we define a quantum iterated functions system (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting a QIFS consists of completely positive maps acting in the space of density operators. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant states.Comment: 12 pages, 1 figure include

    Transition Probability (Fidelity) and Its Relatives

    Full text link
    Transition Probability (fidelity) for pairs of density operators can be defined as "functor" in the hierarchy of "all" quantum systems and also within any quantum system. The introduction of "amplitudes" for density operators allows for a more intuitive treatment of these quantities, also pointing to a natural parallel transport. The latter is governed by a remarkable gauge theory with strong relations to the Riemann-Bures metric.Comment: Talk at the 2009 Vaexoe Quantum Theory Conference. 11 page
    corecore