117 research outputs found
Anisotropic two-dimensional Heisenberg model by Schwinger-boson Gutzwiller projected method
Two-dimensional Heisenberg model with anisotropic couplings in the and
directions () is considered. The model is first solved in the
Schwinger-boson mean-field approximation. Then the solution is Gutzwiller
projected to satisfy the local constraint that there is only one boson at each
site. The energy and spin-spin correlation of the obtained wavefunction are
calculated for systems with up to sites by means of the
variational Monte Carlo simulation. It is shown that the antiferromagnetic
long-range order remains down to the one-dimensional limit.Comment: 15 pages RevTex3.0, 4 figures, available upon request, GWRVB8-9
Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons
We study associative memory neural networks of the Hodgkin-Huxley type of
spiking neurons in which multiple periodic spatio-temporal patterns of spike
timing are memorized as limit-cycle-type attractors. In encoding the
spatio-temporal patterns, we assume the spike-timing-dependent synaptic
plasticity with the asymmetric time window. Analysis for periodic solution of
retrieval state reveals that if the area of the negative part of the time
window is equivalent to the positive part, then crosstalk among encoded
patterns vanishes. Phase transition due to the loss of the stability of
periodic solution is observed when we assume fast alpha-function for direct
interaction among neurons. In order to evaluate the critical point of this
phase transition, we employ Floquet theory in which the stability problem of
the infinite number of spiking neurons interacting with alpha-function is
reduced into the eigenvalue problem with the finite size of matrix. Numerical
integration of the single-body dynamics yields the explicit value of the
matrix, which enables us to determine the critical point of the phase
transition with a high degree of precision.Comment: Accepted for publication in Phys. Rev.
Wigner Crystalization in the Lowest Landau Level for
By means of exact diagonalization we study the low-energy states of seven
electrons in the lowest Landau level which are confined by a cylindric external
potential modelling the rest of a macroscopic system and thus controlling the
filling factor . Wigner crystal is found to be the ground state for
filling factors between and provided electrons
interact via the bare Coulomb potential. Even at the solid state has
lower energy than the Laughlin's one, although the two energies are rather
close. We also discuss the role of pseudopotential parameters in the lowest
Landau level and demonstrate that the earlier reported gapless state, appearing
when the short-range part of the interaction is suppressed, has nothing in
common with the Wigner crystalization in pure Coulomb case.Comment: 9 pages, LaTex, 8 figure
Superfluid phase transition and strong-coupling effects in an ultracold Fermi gas with mass imbalance
We investigate the superfluid phase transition and effects of mass imbalance
in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation)
crossover regime of an cold Fermi gas. We point out that the Gaussian
fluctuation theory developed by Nozi\`eres and Schmitt-Rink and the -matrix
theory, that are now widely used to study strong-coupling physics of cold Fermi
gases, give unphysical results in the presence of mass imbalance. To overcome
this problem, we extend the -matrix theory to include higher-order pairing
fluctuations. Using this, we examine how the mass imbalance affects the
superfluid phase transition. Since the mass imbalance is an important key in
various Fermi superfluids, such as K-Li Fermi gas mixture, exciton
condensate, and color superconductivity in a dense quark matter, our results
would be useful for the study of these recently developing superfluid systems.Comment: 7 pages, 4 figures, Proceedings of QFS-201
Flux-lattice melting in two-dimensional disordered superconductors
The flux line lattice melting transition in two-dimensional pure and
disordered superconductors is studied by a Monte Carlo simulation using the
lowest Landau level approximation and quasi-periodic boundary condition on a
plane. The position of the melting line was determined from the diffraction
pattern of the superconducting order parameter. In the clean case we confirmed
the results from earlier studies which show the existence of a quasi-long range
ordered vortex lattice at low temperatures. Adding frozen disorder to the
system the melting transition line is shifted to slightly lower fields. The
correlations of the order parameter for translational long range order of the
vortex positions seem to decay slightly faster than a power law (in agreement
with the theory of Carpentier and Le Doussal) although a simple power law decay
cannot be excluded. The corresponding positional glass correlation function
decays as a power law establishing the existence of a quasi-long range ordered
positional glass formed by the vortices. The correlation function
characterizing a phase coherent vortex glass decays however exponentially
ruling out the possible existence of a phase coherent vortex glass phase.Comment: 12 pages, 21 figures, final version to appear in Phys. Rev.
Effects of the field modulation on the Hofstadter's spectrum
We study the effect of spatially modulated magnetic fields on the energy
spectrum of a two-dimensional (2D) Bloch electron. Taking into account four
kinds of modulated fields and using the method of direct diagonalization of the
Hamiltonian matrix, we calculate energy spectra with varying system parameters
(i.e., the kind of the modulation, the relative strength of the modulated field
to the uniform background field, and the period of the modulation) to elucidate
that the energy band structure sensitively depends on such parameters:
Inclusion of spatially modulated fields into a uniform field leads occurrence
of gap opening, gap closing, band crossing, and band broadening, resulting
distinctive energy band structure from the Hofstadter's spectrum. We also
discuss the effect of the field modulation on the symmetries appeared in the
Hofstadter's spectrum in detail.Comment: 7 pages (in two-column), 10 figures (including 2 tables
On the self-consistent spin-wave theory of layered Heisenberg magnets
The versions of the self-consistent spin-wave theories (SSWT) of
two-dimensional (2D) Heisenberg ferro- and antiferromagnets with a weak
interlayer coupling and/or magnetic anisotropy, that are based on the
non-linear Dyson-Maleev, Schwinger, and combined boson-pseudofermion
representations, are analyzed. Analytical results for the temperature
dependences of (sublattice) magnetization and short-range order parameter, and
the critical points are obtained. The influence of external magnetic field is
considered. Fluctuation corrections to SSWT are calculated within a
random-phase approximation which takes into account correctly leading and
next-leading logarithmic singularities. These corrections are demonstrated to
improve radically the agreement with experimental data on layered perovskites
and other systems. Thus an account of these fluctuations provides a
quantitative theory of layered magnets.Comment: 46 pages, RevTeX, 7 figure
Abelian gauge potentials on cubic lattices
The study of the properties of quantum particles in a periodic potential
subject to a magnetic field is an active area of research both in physics and
mathematics; it has been and it is still deeply investigated. In this review we
discuss how to implement and describe tunable Abelian magnetic fields in a
system of ultracold atoms in optical lattices. After discussing two of the main
experimental schemes for the physical realization of synthetic gauge potentials
in ultracold set-ups, we study cubic lattice tight-binding models with
commensurate flux. We finally examine applications of gauge potentials in
one-dimensional rings.Comment: To appear on: "Advances in Quantum Mechanics: Contemporary Trends and
Open Problems", G. Dell'Antonio and A. Michelangeli eds., Springer-INdAM
series 201
Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
- …