1,365 research outputs found

    An all-fibre PM MOPA pumped high-power OPO at 3.82 microns based on large aperture PPMgLN

    No full text
    We report a large aperture PPMgLN based OPO generating 21W of average output power at a slope efficiency of 45%, pumped by the output from a polarization maintaining Ytterbium doped fiber MOPA operating at 1060nm producing 58W of average output power and 20ns pulses at a repetition rate of 100kHz. A maximum of 5.5W of optical power was recorded at the idler wavelength of 3.82µm without thermal roll-off. We have experimentally verified that the pulse rise/fall time plays a significant role in the OPO conversion efficiency and that further enhancement in the OPO conversion efficiency will be possible using sub-nanosecond rise and fall times

    Optical detection and modulation at 2µm-2.5µm in silicon

    No full text
    Recently the 2µm wavelength region has emerged as an exciting prospect for the next generation of telecommunications. In this paper we experimentally characterise silicon based plasma dispersion effect optical modulation and defect based photodetection in the 2-2.5µm wavelength range. It is shown that the effectiveness of the plasma dispersion effect is dramatically increased in this wavelength window as compared to the traditional telecommunications wavelengths of 1.3µm and 1.55µm. Experimental results from the defect based photodetectors show that detection is achieved in the 2-2.5µm wavelength range, however the responsivity is reduced as the wavelength is increased away from 1.55µm

    Hilbert forms for a Finsler metrizable projective class of sprays

    Get PDF
    The projective Finsler metrizability problem deals with the question whether a projective-equivalence class of sprays is the geodesic class of a (locally or globally defined) Finsler function. In this paper we use Hilbert-type forms to state a number of different ways of specifying necessary and sufficient conditions for this to be the case, and we show that they are equivalent. We also address several related issues of interest including path spaces, Jacobi fields, totally-geodesic submanifolds of a spray space, and the equivalence of path geometries and projective-equivalence classes of sprays.Comment: 23 page

    The multiplier approach to the projective Finsler metrizability problem

    Get PDF
    This paper is concerned with the problem of determining whether a projective-equivalence class of sprays is the geodesic class of a Finsler function. We address both the local and the global aspects of this problem. We present our results entirely in terms of a multiplier, that is, a type (0,2) tensor field along the tangent bundle projection. In the course of the analysis we consider several related issues of interest including the positivity and strong convexity of positively-homogeneous functions, the relation to the so-called Rapcs\'ak conditions, some peculiarities of the two-dimensional case, and geodesic convexity for sprays.Comment: 25 page

    The High Redshift Integrated Sachs-Wolfe Effect

    Full text link
    In this paper we rely on the quasar (QSO) catalog of the Sloan Digital Sky Survey Data Release Six (SDSS DR6) of about one million photometrically selected QSOs to compute the Integrated Sachs-Wolfe (ISW) effect at high redshift, aiming at constraining the behavior of the expansion rate and thus the behaviour of dark energy at those epochs. This unique sample significantly extends previous catalogs to higher redshifts while retaining high efficiency in the selection algorithm. We compute the auto-correlation function (ACF) of QSO number density from which we extract the bias and the stellar contamination. We then calculate the cross-correlation function (CCF) between QSO number density and Cosmic Microwave Background (CMB) temperature fluctuations in different subsamples: at high z>1.5 and low z<1.5 redshifts and for two different choices of QSO in a conservative and in a more speculative analysis. We find an overall evidence for a cross-correlation different from zero at the 2.7\sigma level, while this evidence drops to 1.5\sigma at z>1.5. We focus on the capabilities of the ISW to constrain the behaviour of the dark energy component at high redshift both in the \LambdaCDM and Early Dark Energy cosmologies, when the dark energy is substantially unconstrained by observations. At present, the inclusion of the ISW data results in a poor improvement compared to the obtained constraints from other cosmological datasets. We study the capabilities of future high-redshift QSO survey and find that the ISW signal can improve the constraints on the most important cosmological parameters derived from Planck CMB data, including the high redshift dark energy abundance, by a factor \sim 1.5.Comment: 20 pages, 18 figures, and 7 table

    On the temperature dependence of the symmetry energy

    Get PDF
    We perform large-scale shell model Monte Carlo (SMMC) calculations for many nuclei in the mass range A=56-65 in the complete pfg_{9/2}d_{5/2} model space using an effective quadrupole-quadrupole+pairing residual interaction. Our calculations are performed at finite temperatures between T=0.33-2 MeV. Our main focus is the temperature dependence of the symmetry energy which we determine from the energy differences between various isobaric pairs with the same pairing structure and at different temperatures. Our SMMC studies are consistent with an increase of the symmetry energy with temperature. We also investigate possible consequences for core-collapse supernovae events

    Effect of an Electron-phonon Interaction on the One-electron Spectral Weight of a d-wave Superconductor

    Full text link
    We analyze the effects of an electron-phonon interaction on the one-electron spectral weight A(k,omega) of a d_{x^2-y^2} superconductor. We study the case of an Einstein phonon mode with various momentum-dependent electron-phonon couplings and compare the structure produced in A(k,omega) with that obtained from coupling to the magnetic pi-resonant mode. We find that if the strength of the interactions are adjusted to give the same renormalization at the nodal point, the differences in A(k,omega) are generally small but possibly observable near k=(pi,0).Comment: 10 pages, 14 figures (color versions of Figs. 2,4,10,11,12 available upon request

    Surface electronic structure of Sr2RuO4

    Full text link
    We have addressed the possibility of surface ferromagnetism in Sr2RuO4 by investigating its surface electronic states by angle-resolved photoemission spectroscopy (ARPES). By cleaving samples under different conditions and using various photon energies, we have isolated the surface from the bulk states. A comparison with band structure calculations indicates that the ARPES data are most readily explained by a nonmagnetic surface reconstruction.Comment: 4 pages, 4 figures, RevTex, submitted to Phys. Rev.
    corecore