16 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Feedback control and the concept of homeostasis

    Get PDF
    AbstractThe maintenance of life requires a steady-state internal environment that must be held relatively constant within carefully prescribed limits. Feedback control mechanisms that provide this type of restraint work through homeostatic regulators that transmit information through a corresponding syntax that is uniquely their own. The language is coded into electromagnetic information that is of a reference nature (genetic, adaptive or conditioned), sensory (informative) or motor (causative), and which is transmitted as action potentials that have a functional dependence on the error signal and a parametric dependence on the disturbing signal. The analysis of homeostasis within the context of feedback control theory reduces seemingly complex, unrelated sequences of physiologic processes into more readily identifiable sets of common denominators that illucidate some basic principles of biologic function. Appropriate interpretation of these biologic principles may help us move closer to success in our efforts to improve the health, comfort and understanding of man. This is because the specific details of complex physiologic processes may be viewed as simply special cases (or different sets of boundary conditions) of a unified guiding theory
    corecore