10 research outputs found

    Lyapunov Exponent Pairing for a Thermostatted Hard-Sphere Gas under Shear in the Thermodynamic Limit

    Full text link
    We demonstrate why for a sheared gas of hard spheres, described by the SLLOD equations with an iso-kinetic Gaussian thermostat in between collisions, deviations of the conjugate pairing rule for the Lyapunov spectrum are to be expected, employing a previous result that for a large number of particles NN, the iso-kinetic Gaussian thermostat is equivalent to a constant friction thermostat, up to 1/N1/\sqrt{N} fluctuations. We also show that these deviations are at most of the order of the fourth power in the shear rate.Comment: 4 pages, to appear in Rapid Comm., Phys. Rev.

    Master equation approach to the conjugate pairing rule of Lyapunov spectra for many-particle thermostatted systems

    Full text link
    The master equation approach to Lyapunov spectra for many-particle systems is applied to non-equilibrium thermostatted systems to discuss the conjugate pairing rule. We consider iso-kinetic thermostatted systems with a shear flow sustained by an external restriction, in which particle interactions are expressed as a Gaussian white randomness. Positive Lyapunov exponents are calculated by using the Fokker-Planck equation to describe the tangent vector dynamics. We introduce another Fokker-Planck equation to describe the time-reversed tangent vector dynamics, which allows us to calculate the negative Lyapunov exponents. Using the Lyapunov exponents provided by these two Fokker-Planck equations we show the conjugate pairing rule is satisfied for thermostatted systems with a shear flow in the thermodynamic limit. We also give an explicit form to connect the Lyapunov exponents with the time-correlation of the interaction matrix in a thermostatted system with a color field.Comment: 10 page

    Perianal Skin Diseases

    No full text
    corecore