47 research outputs found
Competing effects of mass anisotropy and spin Zeeman coupling on the upper critical field of a mixed - and s-wave superconductor
Based on the linearized Eilenberger equations, the upper critical field
of mixed d- and s-wave superconductors has been microscopically
studied with an emphasis on the competing effects of mass anisotropy and spin
Zeeman coupling. We find the mass anisotropy always enhance while the
Zeeman interaction suppresses . As required by the thermodynamics, we
find is saturated at zero temperature. We compare the theoretical
calculations with recent experimental data of
YBaCuO.Comment: To appear in PRB in Feb. 200
Associations of Very High Energy Gamma-Ray Sources Discovered by H.E.S.S. with Pulsar Wind Nebulae
The H.E.S.S. array of imaging Cherenkov telescopes has discovered a number of
previously unknown gamma-ray sources in the very high energy (VHE) domain above
100 GeV. The good angular resolution of H.E.S.S. (~0.1 degree per event), as
well as its sensitivity (a few percent of the Crab Nebula flux) and wide
5-degree field of view, allow a much better constrained search for counterparts
in comparison to previous instruments. In several cases, the association of the
VHE sources revealed by H.E.S.S. with pulsar wind nebulae (PWNe) is supported
by a combination of positional and morphological evidence, multi-wavelength
observations, and plausible PWN model parameters. These include the plerions in
the composite supernova remnants G 0.9+0.1 and MSH 15-52, the recently
discovered Vela X nebula, two new sources in the Kookaburra complex, and the
association of HESS J1825-137 with PSR B1823-13. The properties of these
better-established associations are reviewed. A number of other sources
discovered by H.E.S.S. are located near high spin-down power pulsars, but the
evidence for association is less complete. These possible associations are also
discussed, in the context of the available multi-wavelength data and plausible
PWN scenarios.Comment: 5 pages, to appear in Astrophysics and Space Science (proceedings of
"The Multi-Messenger Approach to High-Energy Gamma-Ray Sources"
Gamma-Ray Bursts: The Underlying Model
A pedagogical derivation is presented of the ``fireball'' model of gamma-ray
bursts, according to which the observable effects are due to the dissipation of
the kinetic energy of a relativistically expanding wind, a ``fireball.'' The
main open questions are emphasized, and key afterglow observations, that
provide support for this model, are briefly discussed. The relativistic outflow
is, most likely, driven by the accretion of a fraction of a solar mass onto a
newly born (few) solar mass black hole. The observed radiation is produced once
the plasma has expanded to a scale much larger than that of the underlying
``engine,'' and is therefore largely independent of the details of the
progenitor, whose gravitational collapse leads to fireball formation. Several
progenitor scenarios, and the prospects for discrimination among them using
future observations, are discussed. The production in gamma- ray burst
fireballs of high energy protons and neutrinos, and the implications of burst
neutrino detection by kilometer-scale telescopes under construction, are
briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture
Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure
PSR J1119-6127 and the X-ray Emission from High Magnetic Field Radio Pulsars
The existence of radio pulsars having inferred magnetic elds in the magnetar regime suggests that possible transition objects could be found in the radio pulsar population. The discovery of such an object would contribute greatly to our understanding of neutron star physics. Here we report on unusual X-ray emission detected from the radio pulsar PSR J1119-6127 using XMM-Newton. The pulsar has a characteristic age of 1,700 yrs and inferred surface dipole magnetic eld strength of 4.1x10^13 G. In the 0.5-2.0 keV range, the emission shows a single, narrow pulse with an unusually high pulsed fraction of ~70%. No pulsations are detected in the 2.0-10.0 keV range, where we derive an upper limit at the 99% level for the pulsed fraction of 28%. The pulsed emission is well described by a thermal blackbody model with a high temperature of 2.4x10^6 K. While no unambiguous signature of magnetar-like emission has been found in high-magnetic-eld radio pulsars, the X-ray characteristics of PSR J1119-6127 require alternate models from those of conventional thermal emission from neutron stars. In addition, PSR J1119-6127 is now the radio pulsar with the smallest characteristic age from which thermal X-ray emission has been detected
Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics
Very-high energy (VHE) gamma quanta contribute only a minuscule fraction -
below one per million - to the flux of cosmic rays. Nevertheless, being neutral
particles they are currently the best "messengers" of processes from the
relativistic/ultra-relativistic Universe because they can be extrapolated back
to their origin. The window of VHE gamma rays was opened only in 1989 by the
Whipple collaboration, reporting the observation of TeV gamma rays from the
Crab nebula. After a slow start, this new field of research is now rapidly
expanding with the discovery of more than 150 VHE gamma-ray emitting sources.
Progress is intimately related with the steady improvement of detectors and
rapidly increasing computing power. We give an overview of the early attempts
before and around 1989 and the progress after the pioneering work of the
Whipple collaboration. The main focus of this article is on the development of
experimental techniques for Earth-bound gamma-ray detectors; consequently, more
emphasis is given to those experiments that made an initial breakthrough rather
than to the successors which often had and have a similar (sometimes even
higher) scientific output as the pioneering experiments. The considered energy
threshold is about 30 GeV. At lower energies, observations can presently only
be performed with balloon or satellite-borne detectors. Irrespective of the
stormy experimental progress, the success story could not have been called a
success story without a broad scientific output. Therefore we conclude this
article with a summary of the scientific rationales and main results achieved
over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic
rays, gamma rays and neutrinos: A survey of 100 years of research
Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths
We review observations of several classes of neutron-star-powered outflows:
pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe
interacting directly with interstellar medium (ISM), and magnetar-powered
outflows. We describe radio, X-ray, and gamma-ray observations of PWNe,
focusing first on integrated spectral-energy distributions (SEDs) and global
spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering
array of morphologies, with jets, trails, and other structures. Several of the
23 so far identified magnetars show evidence for continuous or sporadic
emission of material, sometimes associated with giant flares, and a few
possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published
in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray
Bursts and Blazars: Physics of Extreme Energy Release
Nucleonic gamma-ray production in Pulsar Wind Nebulae
Observations of the inner radian of the Galactic disk at very high energy
(VHE) gamma-rays have revealed at least 16 new sources. Besides shell type
super-nova remnants, pulsar wind nebulae (PWN) appear to be a dominant source
population in the catalogue of VHE gamma-ray sources. Except for the Crab
nebula, the newly discovered PWN are resolved at VHE gamma-rays to be spatially
extended (5-20 pc). Currently, at least 3 middle aged ( kyrs) PWN (Vela
X, G18.0-0.7, and G313.3+0.6 in the ``Kookaburra'' region) and 1 young PWN MSH
15-5{\it2} ( kyrs) have been identified to be VHE emitting PWN
(sometimes called ``TeV Plerions''). Two more candidate ``TeV Plerions'' have
been identifed and have been reported at this conference [1]. In this
contribution, the gamma-ray emission from Vela X is explained by a nucleonic
component in the pulsar wind. The measured broad band spectral energy
distribution is compared with the expected X-ray emission from primary and
secondary electrons. The observed X-ray emission and TeV emission from the
three middle aged PWN are compared with each other.Comment: 6 pages, 3 figures, to appear in proceedings "The Multi-Messenger
Approach to High-Energy Gamma-Ray Sources", Barcelona July 200
Gamma-Ray Pulsars
Gamma-ray photons from young pulsars allow the deepest insight into the
properties and interactions of high-energy particles with magnetic and photon
fields in a pulsar magnetosphere. Measurements with the Compton Gamma-Ray
Observatory have led to the detection of nearly ten gamma-ray pulsars. Although
quite a variety of individual signatures is found for these pulsars, some
general characteristics can be summarized: (1) the gamma-ray lightcurves of
most high-energy pulsars show two major peaks with the pulsed emission covering
more than 50% of the rotation, i.e. a wide beam of emission; (2) the gamma-ray
spectra of pulsars are hard (power law index less than 2), often with a
luminosity maximum around 1 GeV. A spectral cutoff above several GeV is found;
(3) the spectra vary with rotational phase indicating different sites of
emission; and (4) the gamma-luminosity scales with the particle flux from the
open regions of the magnetosphere (Goldreich-Julian current).Comment: 9 pages, 9 figures, 2 tables. To appear in the Proceedings of the
270. WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants,
Jan. 21-25, 2002, Physikzentrum Bad Honnef, eds W. Becker, H. Lesch & J.
Truemper. Proceedings are available as MPE-Report 27
Nitric oxide and cyclic nucleotides: Their roles in junction dynamics and spermatogenesis
Spermatogenesis is a highly complicated process in which functional spermatozoa (haploid, 1n) are generated from primitive mitotic spermatogonia (diploid, 2n). This process involves the differentiation and transformation of several types of germ cells as spermatocytes and spermatids undergo meiosis and differentiation. Due to its sophistication and complexity, testis possesses intrinsic mechanisms to modulate and regulate different stages of germ cell development under the intimate and indirect cooperation with Sertoli and Leydig cells, respectively. Furthermore, developing germ cells must translocate from the basal to the apical (adluminal) compartment of the seminiferous epithelium. Thus, extensive junction restructuring must occur to assist germ cell movement. Within the seminiferous tubules, three principal types of junctions are found namely anchoring junctions, tight junctions, and gap junctions. Other less studied junctions are desmosome-like junctions and hemidesmosome junctions. With these varieties of junction types, testes are using different regulators to monitor junction turnover. Among the uncountable junction modulators, nitric oxide (NO) is a prominent candidate due to its versatility and extensive downstream network. NO is synthesized by nitric oxide synthase (NOS). Three traditional NOS, specified as endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS), and one testis-specific nNOS (TnNOS) are found in the testis. For these, eNOS and iNOS were recently shown to have putative junction regulation properties. More important, these two NOSs likely rely on the downstream soluble guanylyl cyclase/cGMP/protein kinase G signaling pathway to regulate the structural components at the tight junctions and adherens junctions in the testes. Apart from the involvement in junction regulation, NOS/NO also participates in controlling the levels of cytokines and hormones in the testes. On the other hand, NO is playing a unique role in modulating germ cell viability and development, and indirectly acting on some aspects of male infertility and testicular pathological conditions. Thus, NOS/NO bears an irreplaceable role in maintaining the homeostasis of the microenvironment in the seminiferous epithelium via its different downstream signaling pathways
High-time Resolution Astrophysics and Pulsars
The discovery of pulsars in 1968 heralded an era where the temporal
characteristics of detectors had to be reassessed. Up to this point detector
integration times would normally be measured in minutes rather seconds and
definitely not on sub-second time scales. At the start of the 21st century
pulsar observations are still pushing the limits of detector telescope
capabilities. Flux variations on times scales less than 1 nsec have been
observed during giant radio pulses. Pulsar studies over the next 10 to 20 years
will require instruments with time resolutions down to microseconds and below,
high-quantum quantum efficiency, reasonable energy resolution and sensitive to
circular and linear polarisation of stochastic signals. This chapter is review
of temporally resolved optical observations of pulsars. It concludes with
estimates of the observability of pulsars with both existing telescopes and
into the ELT era.Comment: Review; 21 pages, 5 figures, 86 references. Book chapter to appear
in: D.Phelan, O.Ryan & A.Shearer, eds.: High Time Resolution Astrophysics
(Astrophysics and Space Science Library, Springer, 2007). The original
publication will be available at http://www.springerlink.co