29 research outputs found

    Sporopollenin as a dilution agent in artificial diets for solitary bees

    Get PDF
    Nutritional studies often require precise control of nutrients via dilution of artificial diets with indigestible material, but such studies in bees are limited. Common diluents like cellulose typically result in total mortality of bee larvae, making quantitative studies difficult. We investigated potential alternative dietary dilution agents, sporopollenin (pollen exines) and agar. We reared Osmia bicornis larvae on pollen diluted with these substances, alongside undiluted controls. Sporopollenin neither prevented nor improved survival, suggesting it is a suitable diluent. Agar appeared marginally to increase survival and its suitability requires further research. Both substances reduced cocoon weight, and sporopollenin also prolonged development, suggesting processing costs. Determining the physiological mechanisms driving these responses requires further work. Our findings should facilitate studies involving nutritional manipulations for solitary bees

    Predicting the impact of rare variants on RNA splicing in CAGI6

    Get PDF
    Variants which disrupt splicing are a frequent cause of rare disease that have been under-ascertained clinically. Accurate and efficient methods to predict a variant’s impact on splicing are needed to interpret the growing number of variants of unknown significance (VUS) identified by exome and genome sequencing. Here, we present the results of the CAGI6 Splicing VUS challenge, which invited predictions of the splicing impact of 56 variants ascertained clinically and functionally validated to determine splicing impact. The performance of 12 prediction methods, along with SpliceAI and CADD, was compared on the 56 functionally validated variants. The maximum accuracy achieved was 82% from two different approaches, one weighting SpliceAI scores by minor allele frequency, and one applying the recently published Splicing Prediction Pipeline (SPiP). SPiP performed optimally in terms of sensitivity, while an ensemble method combining multiple prediction tools and information from databases exceeded all others for specificity. Several challenge methods equalled or exceeded the performance of SpliceAI, with ultimate choice of prediction method likely to depend on experimental or clinical aims. One quarter of the variants were incorrectly predicted by at least 50% of the methods, highlighting the need for further improvements to splicing prediction methods for successful clinical application

    Applied aspects of pineapple flowering

    Full text link

    Capacidade fotossintética de genótipos de amendoim em ambiente natural e controlado Photosynthetic capacity of peanut genotypes under natural and controlled environment

    No full text
    A capacidade fotossintética das cultivares de amendoim rasteiro (Arachis hypogaea L.) IAC-Caiapó e Runner IAC-886 foi avaliada sob condição controlada, em plantas cultivadas em vasos, mantidos em casa de vegetação, e sob condição natural, em plantas irrigadas, cultivadas em tanques de alvenaria. A resposta da taxa de assimilação líquida de CO2 (A) em decorrência da densidade de fluxo de fótons fotossinteticamente ativos (DFFF) foi melhor em condição controlada, mas, nas duas condições, a mesma A máxima de ca. 28 µmol m-2 s-1 foi atingida. Em condição controlada, a saturação lumínica ocorreu próximo a 1.000 µmol m-2 s-1 , ao passo que sob condição natural, ocorreu em DFFF maiores. A temperatura foliar entre 23 e 36&deg;C não afetou A. A diferença de pressão de vapor entre a folha e o ar causou o fechamento parcial dos estômatos, diminuindo A, quando acima de 3,0 kPa. As capacidades fotossintéticas das duas cultivares de amendoim foram iguais. Ambas cultivares apresentaram boa adaptação às variações diárias do ambiente, ocorridas durante o verão, apresentando fotoinibição dinâmica da fotossíntese no início da tarde (13-14h), manifestada pela queda reversível da eficiência quântica máxima (Fv/Fm) do fotossistema II.<br>Photosynthetic capacity of runner peanuts (Arachis hypogaea L.) cv. IAC-Caiapó and cv. Runner IAC-886 was evaluated under controlled condition, in plants grown on pots maintained in a greenhouse, and in irrigated plants grown on soil-filled tanks made of concrete, and exposed to natural ambient condition. CO2 net assimilation rate (A) response in relation to photosynthetic photon flux density (DFFF) was better in controlled condition, but in both conditions the same maximum A of ca. 28 µmol m-2 s-1 was reached. Under controlled condition, light saturation was about 1,000 µmol m-2 s-1 , although under natural condition, saturation occurred at higher DFFF. Leaf temperature between 23 and 36&deg;C did not affect A, and leaf to air vapor pressure difference caused partial stomatal closing, decreasing A, when above 3.0 kPa. Photosynthetic capacities of the two cultivars were similar. Both cultivars showed good adaptation to daily changes of environmental conditions that occur during summer, showing dynamic photoinhibition of photosynthesis in the beginning of the afternoon (13-14h), as revealed by a reversible decrease in the maximum quantum efficiency (Fv/Fm) of photosystem II
    corecore