4 research outputs found

    Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4

    Get PDF
    An extensive theoretical study is performed for wide bandgap crystalline oxides and nitrides, namely, SiO_{2}, GeO_{2}, Al_{2}O_{3}, Si_{3}N_{4}, and Ge_{3}N_{4}. Their important polymorphs are considered which are for SiO_{2}: α\alpha-quartz, α\alpha- and β\beta-cristobalite and stishovite, for GeO_{2}: α\alpha-quartz, and rutile, for Al_{2}O_{3}: α\alpha-phase, for Si_{3}N_{4} and Ge_{3}N_{4}: α\alpha- and β\beta-phases. This work constitutes a comprehensive account of both electronic structure and the elastic properties of these important insulating oxides and nitrides obtained with high accuracy based on density functional theory within the local density approximation. Two different norm-conserving \textit{ab initio} pseudopotentials have been tested which agree in all respects with the only exception arising for the elastic properties of rutile GeO_{2}. The agreement with experimental values, when available, are seen to be highly satisfactory. The uniformity and the well convergence of this approach enables an unbiased assessment of important physical parameters within each material and among different insulating oxide and nitrides. The computed static electric susceptibilities are observed to display a strong correlation with their mass densities. There is a marked discrepancy between the considered oxides and nitrides with the latter having sudden increase of density of states away from the respective band edges. This is expected to give rise to excessive carrier scattering which can practically preclude bulk impact ionization process in Si_{3}N_{4} and Ge_{3}N_{4}.Comment: Published version, 10 pages, 8 figure

    Fine Splitting of Electron States in Silicon Nanocrystal with a Hydrogen-like Shallow Donor

    Get PDF
    Electron structure of a silicon quantum dot doped with a shallow hydrogen-like donor has been calculated for the electron states above the optical gap. Within the framework of the envelope-function approach we have calculated the fine splitting of the ground sixfold degenerate electron state as a function of the donor position inside the quantum dot. Also, dependence of the wave functions and energies on the dot size was obtained
    corecore