6 research outputs found

    Equilibrium and nonequilibrium fluctuations at the interface between two fluid phases

    Full text link
    We have performed small-angle light-scattering measurements of the static structure factor of a critical binary mixture undergoing diffusive partial remixing. An uncommon scattering geometry integrates the structure factor over the sample thickness, allowing different regions of the concentration profile to be probed simultaneously. Our experiment shows the existence of interface capillary waves throughout the macroscopic evolution to an equilibrium interface, and allows to derive the time evolution of surface tension. Interfacial properties are shown to attain their equilibrium values quickly compared to the system's macroscopic equilibration time.Comment: 10 pages, 5 figures, submitted to PR

    The Dissolution of an Interfween Miscible Liquids

    No full text
    The disappearance of the surface tension of the interface of a binary mixture, measured using the dynamic surface light scattering technique, is slower for a binary mixture of higher density contrast. A comparison with a naive diffusion model, expected to provide a lower limit for the speed of dissolution in the absence of gravity shows that the interfacial surface tension disappears much slower than even by diffusion with the effect becoming much more pronounced when density contrast between the liquid phases is increased. Thus, the factor most likely to be responsible for this anomalously slow dissolution is gravity. A mechanism could be based on the competition between diffusive relaxation and sedimentation at the dissolving interface

    Translating the Concept of Suppressor/Regulatory T Cells to Clinical Applications

    No full text

    The role of ADAMTSs in arthritis

    No full text

    Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial

    No full text
    corecore