654 research outputs found

    Contribution of the hybrid inflation waterfall to the primordial curvature perturbation

    Full text link
    A contribution ζχ\zeta_\chi to the curvature perturbation will be generated during the waterfall that ends hybrid inflation, that may be significant on small scales. In particular, it may lead to excessive black hole formation. We here consider standard hybrid inflation, where the tachyonic mass of the waterfall field is much bigger than the Hubble parameter. We calculate ζχ\zeta_\chi in the simplest case, and see why earlier calculations of ζχ\zeta_\chi are incorrect.Comment: Simpler and more complete results, especiallly for delta N approac

    Evolution of fNL to the adiabatic limit

    Get PDF
    We study inflationary perturbations in multiple-field models, for which zeta typically evolves until all isocurvature modes decay--the "adiabatic limit". We use numerical methods to explore the sensitivity of the nonlinear parameter fNL to the process by which this limit is achieved, finding an appreciable dependence on model-specific data such as the time at which slow-roll breaks down or the timescale of reheating. In models with a sum-separable potential where the isocurvature modes decay before the end of the slow-roll phase we give an analytic criterion for the asymptotic value of fNL to be large. Other examples can be constructed using a waterfall field to terminate inflation while fNL is transiently large, caused by descent from a ridge or convergence into a valley. We show that these two types of evolution are distinguished by the sign of the bispectrum, and give approximate expressions for the peak fNL.Comment: v1: 25 pages, plus Appendix and bibliography, 6 figures. v2: minor edits to match published version in JCA

    Probing Transport Theories via Two-Proton Source Imaging

    Full text link
    Imaging technique is applied to two-proton correlation functions to extract quantitative information about the space-time properties of the emitting source and about the fraction of protons that can be attributed to fast emission mechanisms. These new analysis techniques resolve important ambiguities that bedeviled prior comparisons between measured correlation functions and those calculated by transport theory. Quantitative comparisons to transport theory are presented here. The results of the present analysis differ from those reported previously for the same reaction systems. The shape of the two-proton emitting sources are strongly sensitive to the details about the in-medium nucleon-nucleon cross sections and their density dependence.Comment: 23 pages, 11 figures. Figures are in GIF format. If you need postscript format, please contact: [email protected]

    Issues on Generating Primordial Anisotropies at the End of Inflation

    Full text link
    We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using delta N formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen and scale invariant. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background.Comment: V3: new references added, JCAP published versio

    Non-Gaussianity from false vacuum inflation: Old curvaton scenario

    Full text link
    We calculate the three-point correlation function of the comoving curvature perturbation generated during an inflationary epoch driven by false vacuum energy. We get a novel false vacuum shape bispectrum, which peaks in the equilateral limit. Using this result, we propose a scenario which we call "old curvaton". The shape of the resulting bispectrum lies between the local and the false vacuum shapes. In addition we have a large running of the spectral index.Comment: 13 pages, 3 figures; v2 with minor revison; v3 final version to appear on JCA

    Imaging Sources with Fast and Slow Emission Components

    Full text link
    We investigate two-proton correlation functions for reactions in which fast dynamical and slow evaporative proton emission are both present. In such cases, the width of the correlation peak provides the most reliable information about the source size of the fast dynamical component. The maximum of the correlation function is sensitive to the relative yields from the slow and fast emission components. Numerically inverting the correlation function allows one to accurately disentangle fast dynamical from slow evaporative emission and extract details of the shape of the two-proton source.Comment: 13 pages, 4 figure

    Non-linear corrections to inflationary power spectrum

    Full text link
    We study non-linear contributions to the power spectrum of the curvature perturbation on super-horizon scales, produced during slow-roll inflation driven by a canonical single scalar field. We find that on large scales the linear power spectrum completely dominates and leading non-linear corrections remain totally negligible, indicating that we can safely rely on linear perturbation theory to study inflationary power spectrum. We also briefly comment on the infrared and ultraviolet behaviour of the non-linear corrections.Comment: (v1) 14 pages, 2 figures; (v2) references added and discussions expanded, including a new version of Figure 2, to appear in Journal of Cosmology and Astroparticle Physic

    The inflationary bispectrum with curved field-space

    Get PDF
    We compute the covariant three-point function near horizon-crossing for a system of slowly-rolling scalar fields during an inflationary epoch, allowing for an arbitrary field-space metric. We show explicitly how to compute its subsequent evolution using a covariantized version of the separate universe or "delta-N" expansion, which must be augmented by terms measuring curvature of the field-space manifold, and give the nonlinear gauge transformation to the comoving curvature perturbation. Nonlinearities induced by the field-space curvature terms are a new and potentially significant source of non-Gaussianity. We show how inflationary models with non-minimal coupling to the spacetime Ricci scalar can be accommodated within this framework. This yields a simple toolkit allowing the bispectrum to be computed in models with non-negligible field-space curvature.Comment: 22 pages, plus appendix and reference
    • …
    corecore